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Abstract

We present a comprehensive statistical analysis of the consistency between human and Large
Language Model (LLM) judges in evaluating proof-based mathematical problems, benchmark-
ing 14 state-of-the-art models on the MathArena USAMO 2025 dataset. By decomposing
judgment behavior through error-accuracy, correlation, and distributional metrics, we show
that top performing models exhibit distinct grading philosophies - DeepSeek-Math-V2 grades
strictly, Gemini-3-Pro is precise on partially correct problems, and GPT-5 demonstrates bal-
anced performance. We further identify a consistent “leniency bias,” whereby most models
over-credit structurally plausible yet mathematically flawed solutions. Our analysis further
demonstrates that LLM judges produce significantly higher entropy score distributions than
humans and struggle with local verification, often hallucinating logical bridges rather than
penalizing omitted justifications. We hope our findings will help the community understand
LLM-as-a-judge and math reward models better.
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Figure 1 | Benchmarking LLM graders on MathArena USAMO 2025. Best model is bolded.
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1. Introduction

Large Language Models (LLMs) are increasingly used not only to solve mathematical problems,
but also to judge them — grading long-form, proof-style responses produced by humans or
other models.

Yet a fundamental question remains:

Can an LLM judge math problem answers like a human does?

This report presents a comprehensive statistical analysis of human–LLM grading consistency.
It investigates how current LLM judges align or diverge from human grading standards across
key statistical dimensions.

The analysis decomposes judgment behavior into layered diagnostics to reveal not only whether
LLM judges agree with humans, but also how and why their scoring behavior differs across
distinct validity and difficulty regimes.

Our analysis reveals a clear performance pattern across current LLM judges.

Specifically, GPT-5 and Gemini-3-Pro-Preview exhibit the strongest alignment with human
judges among closed-source models, whereas DeepSeek-Math-V2 and Kimi-K2-Thinking consti-
tute the most reliable and human-aligned judges within the open-source models.

However, despite these encouraging aggregate trends, all existing models still exhibit substantial
limitations in fine-grained evaluative accuracy. These observations also point directly to our
next research direction: strengthening LLMs’ ability to evaluate mathematical reasoning at a
local level. In particular, future judge models need to:

1. more accurately verify the correctness of specific argument steps, rather than relying on
global coherence;

2. more reliably identify missing or skipped reasoning, avoiding the tendency to implicitly
fill in gaps.

Taken together, these goals aim to move beyond coarse approximation and toward LLM judges
that analyze mathematical work with human-level granularity and rigor.

2. Problem Formulation

2.1. Grading Proof-based Problems

Given a mathematical problem 𝑞, a candidate solution 𝑎, and the rubric 𝑟, grading process for
proof-based problems can be formalized as a scoring function:

𝑓𝜃(𝑞, 𝑎, 𝑟) → 𝑠 ∈ S

where 𝑓𝜃 can be either a human grader or an LLM grader, and S represents the scoring space
corresponding to the given rubric. In this work, we follow the USA Mathematical Olympiad
(USAMO) rubric where S = [0, 7].

2.2. Evaluation Desiderata

We leverage three sets of metrics to evaluate LLM graders. In Section 2.2.1, we first introduce
standard error-accuracy metrics for LLM graders. We then present correlation metrics and
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distributional metrics for more fine-grained analysis.

2.2.1. Error–Accuracy Metrics.

Error–accuracy metrics quantify the deviation between model predictions and ground-truth
values on a per-example basis. They directly measure how close the predictions are to the correct
outputs.

Given ground-truth targets {𝑦𝑖}𝑁𝑖=1 and model predictions { 𝑦̂𝑖}𝑁𝑖=1, we consider:

Mean Absolute Error (MAE).

MAE =
1
𝑁

𝑁∑︁
𝑖=1

| 𝑦̂𝑖 − 𝑦𝑖 | . (1)

Mean Squared Error (MSE).

MSE =
1
𝑁

𝑁∑︁
𝑖=1

( 𝑦̂𝑖 − 𝑦𝑖)2 . (2)

Root Mean Squared Error (RMSE).

RMSE =
√

MSE. (3)

Accuracy Within 𝑘. For regression or ordinal prediction tasks, accuracy within 𝑘 measures the
proportion of predictions whose absolute error does not exceed a tolerance threshold 𝑘:

Accuracy≤𝑘 =
1
𝑁

𝑁∑︁
𝑖=1

1 { | 𝑦̂𝑖 − 𝑦𝑖 | ≤ 𝑘 } . (4)

This metric gives a flexible notion of correctness by allowing predictions to be considered correct
if they fall within an acceptable error margin.

2.2.2. Correlation Metrics.

Correlation metrics assess the degree to which model predictions preserve the trend or ordering
of the ground-truth data, largely independent of scale.

Pearson Correlation Coefficient.

𝑟 =

∑𝑁
𝑖=1( 𝑦̂𝑖 − ¯̂𝑦) (𝑦𝑖 − 𝑦̄)√︃∑𝑁

𝑖=1( 𝑦̂𝑖 − ¯̂𝑦)2
√︃∑𝑁

𝑖=1(𝑦𝑖 − 𝑦̄)2
. (5)

Spearman Rank Correlation Coefficient. Let 𝑑𝑖 be the difference between predicted and true
ranks. Then

𝜌 = 1 −
6
∑𝑁
𝑖=1 𝑑

2
𝑖

𝑁 (𝑁2 − 1)
. (6)

Coefficient of Determination (𝑅2). In an ordinary least squares (OLS) linear regression model,
the 𝑅2 score measures the fraction of variance in the response variable explained by the fitted
model. Let

TSS =

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦̄)2, RSS =

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2.
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Then
𝑅2 = 1 − RSS

TSS
. (7)

Higher values indicate better explanatory power of the linear model.

2.2.3. Distributional Metrics.

Distributional metrics evaluate how well the predicted distribution matches the empirical
distribution of the ground truth. They characterize global distributional properties such as
divergence, uncertainty, and variability.

Let 𝑃 be the true distribution and 𝑄 the model distribution.

Entropy Ratio.

𝐻 (𝑃) = −
∑︁
𝑥

𝑃(𝑥) log 𝑃(𝑥), EntropyRatio(𝑃,𝑄) = 𝐻 (𝑄)
𝐻 (𝑃) . (8)

Relative Variance. when comparing two distributions,

RelativeVariance(𝑃 ∥ 𝑄) =
Var𝑄 [𝑋]
Var𝑃 [𝑋]

. (9)

3. Key Findings

We present four major findings on LLM-as-a-judge performance on MathArena USAMO
2025. We begin with overall model benchmarking and distributional analysis in Section 3.1
and Section 3.2. We then examine how models behave differently on zero versus non-zero
scored solutions in Section 3.3, and how grading precision varies across individual problems
in Section 3.4.

3.1. Benchmark LLM-as-a-Judge

We begin our analysis by benchmarking the 14 models (see Figure 1 and Tables 1 to 3) DeepSeek-
Math-V2 emerges as the best overall model, achieving the lowest MAE (0.67), highest accuracy
(0.73), and competitive Pearson correlation (0.62). This suggests it excels at precise numerical
predictions. GPT-5, GPT-5-Pro, and Gemini-3-Pro form a cluster of high-performing models
with MAE values below 1.0, accuracy around 0.56–0.64, and Pearson correlations of 0.74–0.75.
These models balance well across all metrics.

We observe that numerical accuracy alone does not fully capture the models’ grading capabilities:
while 4 models (GPT-5, Kimi-K2-T, GPT-OSS-120B, Qwen3-Max) achieve high accuracy (0.61),
their mean absolute errors vary substantially (from 0.79 to 1.22).

Interestingly, although GPT-5-Pro and Qwen3-235B-A22B-Thinking consume more inference-
time compute, they do not perform as well as their counterparts with less reasoning effort
(GPT-5 and Qwen3-235B-A22B-Instruct).
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3.2. LLM Grades More Diversely than Human
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Figure 2 | Distributional metrics on MathArena USAMO 2025. (Closer to 1 is Better)

The global distributional pattern (Figure 2 and Tab. 3) reveals a systematic expansion in both
entropy and variance across all models. Modern LLMs no longer produce narrowly concen-
trated score distributions; instead, they exhibit broader and more expressive grading behavior
compared with human judges.

DeepSeek-Math-V2 behaves exceptionally good in these two metrics with closer to 1 value on
ER (entropy ratio) and RV (relative variance).

Except that, all models demonstrate elevated ER values (typically in the range 1.6–2.0) (Figure 2
Left), indicating a clear increase in information entropy relative to the human reference. This
suggests that model scoring has become less concentrated and more exploratory, assigning
probability mass across a wider range of plausible evaluations.

The RV values (mostly between 1.3–1.9) (Figure 2 Right) confirm a consistent expansion in score
variance. Compared with human judges, models tend to exaggerate contrasts between good
and bad answers, displaying a mild but systematic over-dispersion bias.

3.3. LLM Gives Lenient Grades

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

154 23 19 3 5 2 2 6

2 5 7 3 1 1

1 1 1

1

1 1 1 3

1 3

1 4 12

GPT-5

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

146 27 14 3 9 5 2 8

7 6 3 1 1 1

2 1

1

1 1 1 2 1

1 2 1

1 2 4 10

Kimi-K2-Thinking

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

137 32 22 5 8 2 3 5

2 4 7 3 2 1

1 1 1

1

1 1 1 3

1 3

4 13

GPT-5-Pro

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

211 3

1 18

1 1 1

1

4 1 1

1 2 1

1 16

Human Baseline

H
um

an
 S

co
re

Model Score

Figure 3 | Confusion Matrices of 3 Models and Human Baseline. Non-integer scores are
rounded to the nearest even integer. A confusion matrix is a table where each cell (𝑖, 𝑗) is the
frequency with which a sample rated 𝑖 by humans receives a score 𝑗 from the model.

LLMs exhibit systematic leniency bias when grading mathematical solutions. The confusion
matrices in Figure 3 reveal that the lower-right triangles (where LLMs assign higher grades than
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Figure 4 | MAE vs. Accuracy on MathArena USAMO 2025. (3 recent models included)

humans) are consistently denser than the upper-left triangles (where LLMs assign lower grades),
indicating that models systematically over-credit solutions relative to human expert judgment.

This leniency, however, manifests differently depending on solution quality. USAMO problems
are exceptionally difficult, with most LLM solutions receiving human grades of 0. This creates
a natural partition for analyzing how graders behave on zero-scored versus non-zero-scored
solutions, revealing nuanced patterns in LLM grading behavior.

LLM graders show contrasting performance patterns across these two subsets (see Figure 4). On
solutions that humans graded as 0, models achieve higher accuracy but higher MAE compared
to their performance on the full dataset. The pattern reverses for solutions with positive human
scores: accuracy drops while MAE improves.

This divergence reflects fundamental differences between the two metrics. MAE measures
numerical proximity to human scores, while accuracy captures categorical correctness (i.e.,
exact score band matching). On non-zero solutions, models track human scores more closely
on average, producing smaller numerical deviations and lower MAE. However, the non-zero
score distribution is denser and more granular—distinguishing among 3, 4, 5, or 6 points rather
than simply 0 versus non-zero—making band misclassification more likely even with small
numerical errors, thereby reducing accuracy.

Individual models exhibit distinct grading philosophies. DeepSeek-Math-V2 grades exception-
ally strictly, achieving the best performance on the Human = 0 subset (10% higher accuracy than
the second-best model) but poor performance on Human > 0. Since MathArena-USAMO2025
is heavily skewed with 80% of samples receiving human grades of 0, DeepSeek-Math-V2’s
strict grading style makes it the best-performing model overall. The Gemini family shows the
opposite pattern—Gemini-3-Pro and Gemini-2.5-Pro rank as the top two models on the Human
> 0 subset while underperforming on the Human = 0 subset. GPT-5 demonstrates balanced
performance across both subsets, though it still exhibits the general leniency bias observed
across all models.
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Figure 5 | Problem-wise Mean Absolute Error.

3.4. Grading Precision Correlates with Problems

Beyond the systematic leniency bias observed above, LLM grading performance also exhibits
strong problem-dependent variation. LLM grader precision varies considerably across problems
(see Figure 5). Remarkably, models of vastly different overall ranks in Table 1 (2st, 9th, 14th)
exhibit nearly identical problem-wise performance patterns: strong grading precision on P2,
P3, and P5, but consistently weaker performance on P4. This pattern becomes even more
pronounced in Table 5, where top models (GPT-5, GPT-OSS-120B, Kimi-K2-Thinking) achieve
near-perfect accuracy (> 0.80) on P2, P3, and P5, yet all struggle with P4.

This problem-specific difficulty is independent of the zero-score pattern analyzed in Section 3.3.
We verify that P4’s grading difficulty does not correlate with the proportion of zero-scored
solutions—in fact, according to human graders, P4 has the second-highest average score and
second-fewest zero grades among all problems, suggesting models struggle with P4 despite (or
perhaps because of) its solutions containing substantial mathematical reasoning.

4. GPT-5 Case Study

4.1. Overall Summary

We evaluate GPT-5’s grading consistency on 264 USAMO 2025 solutions. Overall, GPT-5
demonstrates good global alignment with human judgment, achieving a Pearson correlation
of 0.746, indicating that the model reliably reproduces human scoring trends across the full
score range. Error metrics further show that 91.7% of predictions fall within ±2 points of human
scores, suggesting that GPT-5 is well-suited for coarse-grained evaluation.

However, a more granular analysis reveals systematic deviations. In the zero-score discrimi-
nation layer, GPT-5 assigns non-zero credit to 28% of responses that humans judged invalid,
indicating persistent over-crediting for structurally coherent but mathematically incorrect rea-
soning. Within the valid-answer regime, GPT-5’s alignment strengthens substantially (Pearson
= 0.833).

Problem-wise analysis for GPT-5 (see the GPT-5 curve in the Problem-wise Mean Absolute Error

8



plot, Figure 5) reveals substantial heterogeneity across problems. GPT-5 performs exceptionally
well on Problems 1 and 3 (R² = 0.73 and 0.805, respectively), where solution structures are stable
and strongly cue-driven. In contrast, its performance deteriorates on Problem 4, where the
model shows large positive bias (+2.26) and high divergence from human score distributions,
suggesting difficulty with tasks requiring multi-path or less canonical solution strategies. No-
tably, Problem 2 displays an unusual pattern: despite achieving an lowest MAE (0.114) and
near-perfect ±1 accuracy, its R² is nearly zero. This stems from the fact that human scores for this
problem exhibit almost no variance—most responses receive a score of zero. GPT-5 mirrors this
degenerate distribution, producing predictions that minimize absolute error but fail to explain
any meaningful variation. As a result, the model appears highly accurate in an absolute sense
while contributing no explanatory power, highlighting the limitations of variance-based metrics
under heavily skewed scoring regimes.

Taken together, our results paint GPT-5 as a capable but systematically biased math judge. At
the global level, it correlates well with human scores and achieves high coarse-grained accuracy.
However, the two case studies reveal a consistent failure mode. In Problem 1, GPT-5 over-credits
a solution with clear logical gaps, implicitly “repairing” invalid steps into a plausible derivation;
in Problem 4, it awards full credit to an answer that omits a central computation, treating the
missing work as if it had been carried out correctly. In both cases, the model grades plausibility
and surface structure rather than strictly checking what is actually written. This makes GPT-5
particularly weak at zero-score discrimination and at grading solutions that hinge on explicit,
non-omittable justifications. In short, GPT-5 is well-suited for large-scale, approximate alignment
with human scoring, but it is not yet a reliable substitute for human graders in strict evaluation
settings.

4.2. Problem 1 Case Study: Over-Completion of Incomplete Proofs

GPT-5 assigns a substantially higher score (5/7) despite the student’s omission of several rubric-
critical components. By contrast, both human judges award only 1/7, adhering strictly to the
principle that credit is given solely for arguments explicitly stated in the submission. Although
the student correctly formulates the digit recursion, they do not justify the floor/mod transfor-
mation, the required digit bounds, or the final choice of 𝑁 ; under the rubric, the absence of these
arguments constitutes decisive logical gaps.

GPT-5, however, interprets the incomplete reasoning as indicative of conceptual progress and
implicitly reconstructs intermediate steps. It grants partial credit for the floor/mod manipulation
(2/3), for the bounding argument (1/2), and full credit for the structural conclusion (1/1). In
effect, GPT-5 rewards the intended structure of the argument rather than the rigor of the written
derivation.

The systematic discrepancy can be attributed to the following differences in evaluative philoso-
phy:

1. Preference for conceptual intent over formal rigor. GPT-5 credits the presence of a
promising methodological idea, whereas human graders require fully articulated and
correct derivations.

2. Local rather than global correctness. Partial correctness on a single digit or a conjectured
pattern is sufficient for GPT-5 to award partial credit; human judges require correctness
uniformly across all digits.

3. Acceptance of inferential vagueness. Expressions such as “easy induction” are treated by
GPT-5 as acceptable indications of intended reasoning, but human judges do not count
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such statements as valid justification.
4. Isolated evaluation of the conclusion. GPT-5 evaluates the final step independently of

earlier deficiencies, awarding full credit if the concluding structure appears sound; human
judges withhold this point when foundational steps are incomplete.

5. Holistic generosity. GPT-5 tends to fill in missing arguments and interpret incomplete
work charitably, whereas human grading is strictly confined to what is explicitly presented
in the written solution.

4.2.1. Problem Statement and Student Answer (Answer ID: 1)

Problem Statement:

Let 𝑘 and 𝑑 be positive integers. Prove that there exists a positive integer 𝑁 such that for every
odd integer 𝑛 > 𝑁, the digits in the base-2𝑛 representation of 𝑛𝑘 are all greater than 𝑑.

Equivalently, if

𝑛𝑘 =

𝑟∑︁
𝑖=0

𝑎𝑖 (2𝑛) 𝑖, 0 ≤ 𝑎𝑖 < 2𝑛,

show that for all sufficiently large odd 𝑛, we have 𝑎𝑖 > 𝑑 for every 𝑖.

Student Answer:

Statement to prove. Fix positive integers 𝑘 and 𝑑. Then there is an 𝑁 so that for every odd integer
𝑛 > 𝑁, the base-(2𝑛) expansion of 𝑛𝑘 has all of its “digits” strictly bigger than 𝑑.

In more elementary language, writing

𝑛𝑘 = 𝑎𝑟 (2𝑛)𝑟 + 𝑎𝑟−1(2𝑛)𝑟−1 + · · · + 𝑎1(2𝑛) + 𝑎0

with each digit 0 ≤ 𝑎 𝑗 < 2𝑛, we must show that for all sufficiently large odd 𝑛, every 𝑎 𝑗 is actually
greater than 𝑑.

1. The least significant digit is always 𝑛.

A convenient starting observation is the following congruence:

𝑛𝑘 ≡ 𝑛 (mod 2𝑛) whenever 𝑛 is odd.

Indeed, one checks first that 𝑛1 ≡ 𝑛 (mod 2𝑛) is trivially true. Then, assuming 𝑛𝑘 ≡ 𝑛 (mod 2𝑛),
one has

𝑛𝑘+1 = 𝑛𝑘 · 𝑛 ≡ 𝑛 · 𝑛 = 𝑛2 (mod 2𝑛).

But for odd 𝑛, it is also true that
𝑛2 ≡ 𝑛 (mod 2𝑛),

since 𝑛2 − 𝑛 = 𝑛(𝑛 − 1) is clearly a multiple of 2𝑛 whenever 𝑛 is odd. By induction,

𝑛𝑘 ≡ 𝑛 (mod 2𝑛)

for all positive 𝑘.

From this congruence we see at once that

𝑎0 = 𝑛𝑘 mod (2𝑛) = 𝑛.

10



Hence the least significant digit of 𝑛𝑘 in base (2𝑛) is always exactly 𝑛. In particular, once 𝑛 > 𝑑,
the digit 𝑎0 exceeds 𝑑.

2. A recursion for the higher “digits.”

To find the next digit 𝑎1, we form

𝑥1 =
⌊
𝑛𝑘/(2𝑛)

⌋
, 𝑎1 = 𝑥1 mod (2𝑛), 𝑥2 =

⌊
𝑥1/(2𝑛)

⌋
, and so on.

In other words, once we know that
𝑛𝑘 = 𝑛 + (2𝑛)𝑥1,

we then define 𝑎1 = 𝑥1 mod (2𝑛) and 𝑥2 = ⌊𝑥1/(2𝑛)⌋. Continuing likewise gives all the higher
digits 𝑎2, 𝑎3, . . . .

Concretely, since 𝑛𝑘 ≡ 𝑛 (mod 2𝑛) implies (𝑛𝑘 − 𝑛) is divisible by 2𝑛, we get

𝑥1 =
𝑛𝑘 − 𝑛

2𝑛
=
𝑛(𝑛𝑘−1 − 1)

2𝑛
=
𝑛𝑘−1 − 1

2
.

Thus
𝑎1 =

(
𝑛 𝑘−1−1

2
)

mod (2𝑛).

One may continue similarly for 𝑥2 by dividing 𝑥1 by 2𝑛, and so on.

3. Each higher digit also becomes large for large 𝑛.

A key point is that each “quotient” 𝑥 𝑗 is in fact quite large once 𝑛 is large, yet still satisfies a
simple congruence mod 𝑛. Indeed:

𝑥1 = 𝑛𝑘−1−1
2 ≡ 𝑛−1

2 (mod 𝑛),

because 𝑛𝑘−1 ≡ 𝑛 (mod 2𝑛) implies 𝑛𝑘−1 − 1 ≡ 𝑛 − 1 (mod 2𝑛), and hence also mod 𝑛. One finds
that

𝑥1 = 𝑛−1
2 + 𝑛𝛼1 for some integer 𝛼1.

Thus
𝑎1 = 𝑥1 mod (2𝑛) =

(
𝑛−1

2 + 𝑛𝛼1

)
mod (2𝑛).

Since 𝑛𝛼1 ≡ 0 or 𝑛 (mod 2𝑛) depending on whether 𝛼1 is even or odd, one sees that

𝑎1 ∈
{
𝑛−1

2 , 3𝑛−1
2

}
.

Both of these are on the order of 𝑛/2. Consequently, once 𝑛 is large enough so that 𝑛−1
2 > 𝑑, we

get 𝑎1 > 𝑑.

Repeating the same division–remainder process for

𝑥2 =
⌊
𝑥1/(2𝑛)

⌋
one finds similarly that 𝑎2 = 𝑥2 mod (2𝑛) must lie in a small finite set of values, each of which
again is on the order of 𝑛/22. And so on. In general one proves (by an easy induction) that 𝑎 𝑗 is
always of the form

(2𝑡 + 1)𝑛 − 1
2 𝑗

,

for some integer 𝑡, and hence all those possible values grow linearly with 𝑛 up to a factor 1/2 𝑗.
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Since the base-(2𝑛) expansion of 𝑛𝑘 has at most 𝑘 or 𝑘 + 1 digits (in fact strictly fewer than (2𝑛)𝑘
bounds the number of digits), we only need to check finitely many 𝑗 ∈ {0, 1, . . . , 𝑘 − 1}. For each
such 𝑗, the expressions show 𝑎 𝑗 is eventually at least 𝑛/2 𝑗 minus a small constant. Therefore,
once 𝑛 is large enough, each 𝑎 𝑗 exceeds 𝑑.

4. Conclusion: choosing 𝑁.

Gathering the above estimates together shows there is a finite threshold 𝑁 (depending on 𝑘 and
𝑑) so that for all odd 𝑛 > 𝑁 , each digit 𝑎 𝑗 of 𝑛𝑘 in base (2𝑛) indeed satisfies 𝑎 𝑗 > 𝑑. Concretely, we
must ensure

𝑛 > 𝑑, 𝑛
2 > 𝑑, 𝑛

22 > 𝑑, . . . , 𝑛
2𝑘−1 > 𝑑,

so taking
𝑁 = max{2𝑘−1𝑑, 𝑑} (an odd integer)

works. Hence for all odd 𝑛 > 𝑁, the base-(2𝑛) representation of 𝑛𝑘 has every digit strictly bigger
than 𝑑, completing the proof.

4.2.2. Rubrics

• Initial closed form expression for each digit, Max points: 1. Rubric content: Uses the
base-2𝑛 representation of 𝑛𝑘 to find a closed form expression of each digit

𝑎𝑖 =

⌊
𝑛𝑘

(2𝑛) 𝑖

⌋
mod (2𝑛).

• Interchanging the floor and mod, Max points: 3. Rubric content: Transforms the digit
expression into an easily boundable one by interchanging the floor and modulo operations.

• Bounding the expression, Max points: 2. Rubric content: Correctly bounds the aforemen-
tioned expression, usually by showing the numerator is divisible by 𝑛, so that

𝑎𝑖 ≥
⌊ 𝑛

2𝑖
⌋

.

• Finishing, Max points: 1. Rubric content: Chooses a provably sufficiently large 𝑁. The
point is not awarded if it has not proven that 𝑛𝑘 has at most 𝑘 digits.

4.2.3. Grading Details

Human Judge 1

Points: 1/7

• Initial closed form expression for each digit (1 pt)

– The model derives a non-trivial set of possible values of 𝑎𝑖.
– Points: 1 / 1

• Interchanging the floor and mod (3 pts)

– The model states the properties of the set can be proven by induction, but the model
shows only first step of the induction, as well as the base case.

– Points: 0 / 3
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• Bounding the expression (2 pts)

– The model does not formally prove that the set contains all possible values of 𝑎𝑖.
– Points: 0 / 2

• Finishing (1 pt)

– The model does not complete the solution in a rigorous manner.
– Points: 0 / 1

Human Judge 2

Points: 1/7

• Initial closed form expression for each digit (1 pt)

– The model finds a useful expression for each digit and has an idea, which can lead to
a correct proof.

– Points: 1 / 1

• Interchanging the floor and mod (3 pts)

– The model makes a wrong calculation and statement.
– Points: 0 / 3

• Bounding the expression (2 pts)

– The model incorrectly bounds each digit.
– Points: 0 / 2

• Finishing (1 pt)

– The model doesn’t finish a correct proof.
– Points: 0 / 1

LLM Judge

Points: 5/7

• Criterion 1 (Initial closed form expression for each digit, 1 pt)
Student: Writes 𝑛𝑘 =

∑
𝑎 𝑗 (2𝑛) 𝑗 with 0 ≤ 𝑎 𝑗 < 2𝑛, and defines recursively 𝑥1 = ⌊𝑛𝑘/(2𝑛)⌋,

𝑎1 = 𝑥1 mod (2𝑛), 𝑥2 = ⌊𝑥1/(2𝑛)⌋, etc., which implies 𝑎𝑖 = ⌊𝑛𝑘/(2𝑛) 𝑖⌋ mod (2𝑛).
Evaluation: Correctly identifies the base-(2𝑛) digit formula via the floor/mod recursion.
Points: 1/1

• Criterion 2 (Interchanging the floor and mod, 3 pts)
Student: Uses congruence 𝑛𝑘 ≡ 𝑛 (mod 2𝑛) to eliminate the floor at the first step and get
𝑥1 = (𝑛𝑘 − 𝑛)/(2𝑛) = (𝑛𝑘−1 − 1)/2, then analyzes 𝑎1 via congruences mod 𝑛 and mod 2𝑛.
For higher digits, claims “continuing similarly” and an “easy induction” that 𝑎 𝑗 has the
form ((2𝑡 + 1)𝑛 − 1)/2 𝑗, but does not show the analogous interchange/elimination of floor
beyond the first step.
Evaluation: Successfully transforms the first digit beyond 𝑎0 into an easily boundable form
by leveraging exact divisibility, but does not carry out the detailed interchange/elimination
for general 𝑖. Partial fulfillment.
Points: 2/3

• Criterion 3 (Bounding the expression, 2 pts)
Student: For 𝑎1, derives 𝑎1 ∈ {(𝑛 − 1)/2, (3𝑛 − 1)/2}, giving a clear lower bound ≈ 𝑛/2. For
general 𝑎 𝑗, asserts they are of the form ((2𝑡 + 1)𝑛 − 1)/2 𝑗 and hence “eventually at least
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𝑛/2 𝑗− (small constant),” but provides no rigorous derivation of this form or bound for all 𝑗.
Evaluation: Provides a correct bound for 𝑎1 and a qualitative bound for general 𝑗 without
full justification. Partial credit.
Points: 1/2

• Criterion 4 (Finishing, 1 pt)
Student: Notes 𝑛𝑘 < (2𝑛)𝑘, hence at most 𝑘 digits, and chooses 𝑁 ensuring 𝑛/2 𝑗 > 𝑑 for all
𝑗 ≤ 𝑘 − 1 (e.g., 𝑁 ≥ 𝑑 · 2𝑘−1, with oddness condition).
Evaluation: Correctly observes the bound on the number of digits and provides a sufficient
𝑁.
Points: 1/1

4.2.4. Criterion-by-Criterion Comparison

1. Initial Closed-Form Expression (1 pt)

All three evaluations—Judge 1, Judge 2, and GPT-5—award full credit. The student’s base-(2𝑛)
expansion

𝑛𝑘 =
∑︁
𝑗

𝑎 𝑗 (2𝑛) 𝑗, 0 ≤ 𝑎 𝑗 < 2𝑛

and the associated floor–mod recursion are entirely correct. Hence no discrepancy exists for this
criterion.

2. Interchanging Floor and Mod (3 pts)

Human Judge 1. Both judges give 0/3. Their reasoning:

• The student only carries out the base case and the first inductive step.
• The claimed induction (“continuing similarly”) is not demonstrated.
• Judge 2 notes an incorrect statement in this part.

Since the criterion demands a general and rigorous treatment for all digits, the attempt is judged
insufficient.

LLM Judge. LLM Judge awards 2/3. It notes:

• The student correctly removes the floor in the first step using 𝑛𝑘 ≡ 𝑛 (mod 2𝑛), yielding
an exact expression for the first quotient.

• This demonstrates a valid technique for simplifying the recursion.
• Although the method is not carried through for all indices, GPT-5 regards the partial

demonstration as substantial progress.

Analysis of GPT-5 Misjudgement. GPT-5 evaluates this step by emphasizing the presence
of a correct core idea. It interprets the successful manipulation of the first floor–mod step as
evidence that the student understands the essential mechanism needed for generalization. Even
though the full induction is missing, GPT-5 credits the student for demonstrating a meaningful
and technically valid approach rather than requiring the argument to be fully executed.

3. Bounding the Digits (2 pts)
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Human Judges. Both judges give 0/2:

• Judge 1 observes that the student never proves the set covers all possible 𝑎𝑖.
• Judge 2 states that the bounding is incorrect for the general case.

Thus the absence of a complete and correct argument yields zero credit.

LLM Judge. LLM Judge gives 1/2, reasoning that:

• The bound for 𝑎1 is correctly derived.
• The asserted pattern (2𝑡+1)𝑛−1

2 𝑗 is plausible though unproven.
• Taken together, this constitutes a partial bounding effort with some correct content.

Analysis of GPT-5 Misjudgement. GPT-5 tends to award partial credit for partially correct
derivations. In this step, it recognizes that the student accurately bounded 𝑎1 and attempted to
generalize the pattern. Although the general case is unsupported, GPT-5 interprets the attempt
as demonstrating conceptual direction rather than dismissing it entirely. Hence it assigns partial
credit rather than zero.

4. Finishing the Proof (1 pt)

Human Judges. Both give 0/1, because:

• The proof is not rigorous in earlier steps.
• Therefore the final conclusion cannot be regarded as a legitimate completion.

LLM Judge. LLM Judge awards 1/1, noting that:

• The student correctly establishes that 𝑛𝑘 < (2𝑛)𝑘, giving at most 𝑘 digits.
• They choose an 𝑁 ensuring 𝑎 𝑗 > 𝑑 for all 𝑗 ≤ 𝑘 − 1.
• Structurally, this completes the argument.

Analysis of GPT-5 Misjudgement. GPT-5 treats the proof’s final step as logically independent
of earlier deficiencies. Its scoring focuses on whether the student has assembled a coherent
concluding structure: bounding the total number of digits and selecting 𝑁 to enforce the desired
inequality. Since the conclusion is formally correct, GPT-5 assigns full credit even though earlier
parts contain gaps.

4.3. Problem 4 Case Study: Tendency to Reward Plausible but Incorrect Reasoning

In this case, the LLM judge assigns partial credit (3/7) even though the student’s solution contains
multiple unproven claims, incorrect geometric statements, and a missing critical identity that
is explicitly assumed rather than derived. Both human judges, by contrast, assign a zero score
because the solution fails to establish any of the required geometric constructions or properties
and never completes the proof.
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The discrepancy arises because the LLM interprets the student’s argument as if several steps
were present, valid, or sufficiently justified. It treats plausible intermediate statements—such
as collinearity, midpoint relations, or power-of-a-point expressions—as though the student
had genuinely proved them, even when the reasoning is absent or incorrect. Human judges,
however, score only what is explicitly argued and penalize missing derivations and false claims
as fatal errors that invalidate entire scoring categories.

• LLM judges treat mathematically plausible steps as if they were proven, overlook missing
derivations, and under-penalize serious geometric errors.

• Human judges require explicit justification for every key construction property and con-
sider unproven or incorrect claims as fully invalidating the argument.

4.3.1. Problem Statement and Student Answer (Answer ID: 4)

Problem Statement

Given an acute triangle 𝐴𝐵𝐶, let:

• 𝐻 be the orthocenter,
• 𝐹 the foot from 𝐶 to 𝐴𝐵,
• 𝑃 the reflection of 𝐻 across 𝐵𝐶.

The circumcircle of △𝐴𝐹𝑃 intersects 𝐵𝐶 at two points 𝑋 and 𝑌 .

Prove that 𝐶 is the midpoint of 𝑋𝑌 .

Student Answer

Let 𝐴, 𝐵,𝐶 be the vertices of an acute triangle, and let 𝐻 be its orthocenter. Let 𝐷, 𝐸, 𝐹 be
the feet of the altitudes from 𝐴, 𝐵,𝐶 to 𝐵𝐶,𝐶𝐴, 𝐴𝐵 respectively. Let Γ be the circumcircle of
△𝐴𝐵𝐶. Let 𝑃 be the reflection of 𝐻 across the line 𝐵𝐶. A well-known property is that 𝑃 lies
on the circumcircle Γ. Let’s prove this property. Let 𝐷 be the foot of the altitude from 𝐴

to 𝐵𝐶. Since 𝐻 lies on 𝐴𝐷, 𝐴𝐷 is the line containing 𝐻 perpendicular to 𝐵𝐶. Since 𝑃 is the
reflection of 𝐻 across 𝐵𝐶, the line 𝐻𝑃 is perpendicular to 𝐵𝐶, and the midpoint of 𝐻𝑃 lies on
𝐵𝐶. This means the line 𝐻𝑃 is parallel to 𝐴𝐷. Since 𝐻 is on 𝐴𝐷, 𝑃 must lie on the line 𝐴𝐷.
Also, the midpoint of 𝐻𝑃 must be the intersection of 𝐻𝑃 and 𝐵𝐶, which is 𝐷. So 𝐷 is the
midpoint of 𝐻𝑃, which means 𝐻𝐷 = 𝐷𝑃. Let ∠𝐴𝐵𝐶 = 𝛽 and ∠𝐴𝐶𝐵 = 𝛾. In right-angled △𝐶𝐷𝐻,
∠𝐻𝐶𝐷 = ∠𝐹𝐶𝐵 = 90◦ − 𝛽. Thus, ∠𝐶𝐻𝐷 = 90◦ − ∠𝐻𝐶𝐷 = 90◦ − (90◦ − 𝛽) = 𝛽. Since 𝐷 is the
midpoint of 𝐻𝑃 and 𝐶𝐷 ⊥ 𝐻𝑃, △𝐶𝐷𝑃 � △𝐶𝐷𝐻 (SAS congruence: 𝐶𝐷 = 𝐶𝐷, ∠𝐶𝐷𝑃 = ∠𝐶𝐷𝐻 = 90◦,
𝐷𝑃 = 𝐷𝐻). Thus ∠𝐶𝑃𝐷 = ∠𝐶𝐻𝐷 = 𝛽. Since 𝐴, 𝐵,𝐶 are on the circumcircle Γ, we want to show 𝑃 is
on Γ. 𝐴, 𝐵,𝐶, 𝑃 are concyclic if ∠𝐵𝑃𝐶 + ∠𝐵𝐴𝐶 = 180◦ or ∠𝐶𝑃𝐴 = ∠𝐶𝐵𝐴. Similarly, △𝐵𝐷𝑃 � △𝐵𝐷𝐻
(SAS congruence: 𝐵𝐷 = 𝐵𝐷, ∠𝐵𝐷𝑃 = ∠𝐵𝐷𝐻 = 90◦, 𝐷𝑃 = 𝐷𝐻). Thus ∠𝐵𝑃𝐷 = ∠𝐵𝐻𝐷. In right-
angled △𝐵𝐷𝐻, ∠𝐻𝐵𝐷 = ∠𝐸𝐵𝐶 = 90◦ − 𝛾. So ∠𝐵𝐻𝐷 = 90◦ − (90◦ − 𝛾) = 𝛾. Thus ∠𝐵𝑃𝐷 = 𝛾.
Therefore, ∠𝐵𝑃𝐶 = ∠𝐵𝑃𝐷 + ∠𝐶𝑃𝐷 = 𝛾 + 𝛽. Since 𝛼 + 𝛽 + 𝛾 = 180◦, we have 𝛽 + 𝛾 = 180◦ − 𝛼. So
∠𝐵𝑃𝐶 = 180◦ − 𝛼. Since 𝐻 is inside the acute triangle, 𝐴 and 𝐻 are on the same side of 𝐵𝐶. 𝑃 is the
reflection of 𝐻 across 𝐵𝐶, so 𝑃 is on the opposite side of 𝐵𝐶 from 𝐴. The locus of points 𝑋 such
that ∠𝐵𝑋𝐶 = 180◦ − 𝛼 on the opposite side of 𝐵𝐶 from 𝐴 is the circumcircle Γ of △𝐴𝐵𝐶. Thus, 𝑃
lies on Γ.

Let Ω be the circumcircle of △𝐴𝐹𝑃. We are given that Ω intersects the line 𝐵𝐶 at two distinct
points 𝑋 and 𝑌 . We want to prove that 𝐶 is the midpoint of the segment 𝑋𝑌 . Let 𝑃Ω (𝐾) denote
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the power of a point 𝐾 with respect to the circle Ω. Let 𝐶 be the origin on the line 𝐵𝐶. Let
𝑥 and 𝑦 be the coordinates of 𝑋 and 𝑌 . 𝐶 is the midpoint of 𝑋𝑌 if and only if 𝑥 + 𝑦 = 0. The
power of 𝐶 with respect to Ω is 𝑃Ω (𝐶) = ®𝐶𝑋 · ®𝐶𝑌 = 𝑥 𝑦. If 𝐶 is the midpoint, then 𝑦 = −𝑥, so
𝑃Ω (𝐶) = 𝑥 (−𝑥) = −𝑥2 = −𝐶𝑋2. Let 𝐷 be the foot of the altitude from 𝐴 to 𝐵𝐶. The power of 𝐷
with respect to Ω is 𝑃Ω (𝐷) = ®𝐷𝑋 · ®𝐷𝑌 . Let 𝐶 be the origin and 𝐷 have coordinate 𝑑. 𝑋 = 𝑥,𝑌 = 𝑦.
𝑃Ω (𝐷) = (𝑥 − 𝑑) (𝑦 − 𝑑) = 𝑥 𝑦 − 𝑑(𝑥 + 𝑦) + 𝑑2 = 𝑃Ω (𝐶) − 𝑑(𝑥 + 𝑦) + 𝑑2. If 𝐶 is the midpoint of 𝑋𝑌 ,
then 𝑥 + 𝑦 = 0. In this case, 𝑃Ω (𝐷) = 𝑃Ω (𝐶) + 𝑑2. Using the vector notation, ®𝐷𝑋 = ®𝐶𝑋 − ®𝐶𝐷
and ®𝐷𝑌 = ®𝐶𝑌 − ®𝐶𝐷. 𝑃Ω (𝐷) = ( ®𝐶𝑋 − ®𝐶𝐷) · ( ®𝐶𝑌 − ®𝐶𝐷) = ®𝐶𝑋 · ®𝐶𝑌 − ®𝐶𝐷 · ( ®𝐶𝑋 + ®𝐶𝑌 ) + 𝐶𝐷2. 𝑃Ω (𝐷) =

𝑃Ω (𝐶) − ®𝐶𝐷 · ( ®𝐶𝑋 +
𝑣𝑒𝑐𝐶𝑌 ) + 𝐶𝐷2. 𝐶 is the midpoint of 𝑋𝑌 iff ®𝐶𝑋 + ®𝐶𝑌 = 0. This is equivalent to 𝑃Ω (𝐷) = 𝑃Ω (𝐶) + 𝐶𝐷2.
So we need to compute 𝑃Ω (𝐷) and 𝑃Ω (𝐶) and check if this relation holds.

Let’s compute 𝑃Ω (𝐷). 𝐴, 𝐹, 𝑃 are on Ω. 𝐴, 𝐷, 𝑃 are collinear as shown earlier. The line 𝐴𝐷

intersects Ω at 𝐴 and 𝑃. The power of 𝐷 with respect to Ω is 𝑃Ω (𝐷) = ®𝐷𝐴 · ®𝐷𝑃. Since 𝐴, 𝐻, 𝐷
are collinear in that order (𝐴𝐵𝐶 is acute), and 𝐷 is the midpoint of 𝐻𝑃, the order on the line is
𝐴 − 𝐻 − 𝐷 − 𝑃. Thus 𝐷 is between 𝐴 and 𝑃? No, 𝐷 is between 𝐻 and 𝑃. A is "above" H relative
to BC. 𝐴 − 𝐻 − 𝐷 − 𝑃. The vectors ®𝐷𝐴 and ®𝐷𝑃 point in opposite directions. Let 𝐴𝐷 length be ℎ𝑎.
𝐷𝑃 = 𝐷𝐻. 𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝑃 = −𝐴𝐷 · 𝐷𝐻.

Now we establish the identity 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. If this identity holds, then 𝑃Ω (𝐶) =

−𝐶𝐷2 + 𝑃Ω (𝐷). This implies 𝑃Ω (𝐷) = 𝑃Ω (𝐶) + 𝐶𝐷2. As shown above, this is equivalent to 𝐶 being
the midpoint of 𝑋𝑌 .

We need to prove 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. We know that 𝐵,𝐶, 𝐷, 𝐹 are concyclic (on the circle
with diameter 𝐵𝐶, call it 𝜔𝐵𝐶) because ∠𝐵𝐷𝐶 = ∠𝐵𝐹𝐶 = 90◦. The power of 𝐴 with respect to 𝜔𝐵𝐶 is
𝑃𝜔𝐵𝐶

(𝐴) = ®𝐴𝐹 · ®𝐴𝐵. Since 𝐹 lies on the segment 𝐴𝐵 (because △𝐴𝐵𝐶 is acute), 𝐴, 𝐹, 𝐵 are in order.
Let 𝐴𝐹 = 𝑙𝐹 , 𝐴𝐵 = 𝑐. 𝑃𝜔𝐵𝐶

(𝐴) = 𝐴𝐹 · 𝐴𝐵 = 𝐴𝐹 · 𝑐. 𝐴𝐹 = 𝑏 cos 𝐴. 𝑃𝜔𝐵𝐶
(𝐴) = 𝑏𝑐 cos 𝐴. Also, 𝐴,𝐶, 𝐸, 𝐹 are

concyclic (on the circle with diameter 𝐴𝐶, call it 𝜔𝐴𝐶) because ∠𝐴𝐸𝐶 = ∠𝐴𝐹𝐶 = 90◦. The power of
𝐵 wrt 𝜔𝐴𝐶 is 𝐵𝐹 · 𝐵𝐴. 𝐵𝐹 = 𝑎 cos 𝐵. 𝐵𝐴 = 𝑐. 𝑎𝑐 cos 𝐵. Power of 𝐵 is also 𝐵𝐸 · 𝐵𝐶. No.

We know that 𝐴𝐷 · 𝐴𝐻 = 𝐴𝐸 · 𝐴𝐶. In △𝐴𝐷𝐶, ∠𝐴𝐷𝐶 = 90◦. In △𝐴𝐸𝐻, ∠𝐴𝐸𝐻 = 90◦? No. 𝐶, 𝐷, 𝐻, 𝐸
are concyclic (circle on diameter 𝐶𝐻). Power of A wrt this circle is 𝐴𝐷 · 𝐴𝐻 = 𝐴𝐸 · 𝐴𝐶. This is a
known property. 𝐴𝐷 · 𝐴𝐻 = 𝑏𝑐 cos 𝐴. So 𝑃𝜔𝐵𝐶

(𝐴) = 𝐴𝐷 · 𝐴𝐻.

Now consider the three circles Ω(𝐴𝐹𝑃), Γ(𝐴𝐵𝐶), 𝜔𝐵𝐶 (𝐵𝐹𝐷𝐶). The radical axis of Ω and Γ is the
line 𝐴𝑃 (since 𝐴, 𝑃 are common to both). The radical axis of Γ and 𝜔𝐵𝐶 is the line 𝐵𝐶 (since 𝐵,𝐶
are common to both). Let 𝐿 be the radical axis of Ω and 𝜔𝐵𝐶 . The three radical axes 𝐴𝑃, 𝐵𝐶, 𝐿
must concur at the radical center. Let 𝐷 = 𝐴𝑃 ∩ 𝐵𝐶. So 𝐷 is the radical center. 𝐷 must lie on 𝐿.
The property of the radical center 𝐷 is 𝑃Ω (𝐷) = 𝑃Γ (𝐷) = 𝑃𝜔𝐵𝐶

(𝐷). Since 𝐷 lies on the circle 𝜔𝐵𝐶 (as
∠𝐵𝐷𝐶 = 90◦), the power of 𝐷 with respect to 𝜔𝐵𝐶 is 𝑃𝜔𝐵𝐶

(𝐷) = 0. Thus, 𝑃Ω (𝐷) = 0 and 𝑃Γ (𝐷) = 0.
𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝐻. Since 𝐴𝐷 > 0 (as 𝐴 is not on 𝐵𝐶), this implies 𝐷𝐻 = 0. This means 𝐻 = 𝐷. If
𝐻 = 𝐷, 𝐷 is the orthocenter. Since 𝐷 lies on 𝐵𝐶, this implies that the altitudes 𝐵𝐷 and 𝐶𝐷 must
lie along 𝐵𝐶. This means 𝐵𝐶 ⊥ 𝐴𝐶 (∠𝐶 = 90◦) and 𝐵𝐶 ⊥ 𝐴𝐵 (∠𝐵 = 90◦). This is impossible for a
triangle.

Let’s re-evaluate the radical axis argument. There must be an error. Ah, the error is subtle. 𝐴, 𝑃
are on Ω and Γ. 𝐴𝑃 is the radical axis only if Ω ≠ Γ. 𝐵,𝐶 are on Γ and 𝜔𝐵𝐶 . 𝐵𝐶 is the radical
axis only if Γ ≠ 𝜔𝐵𝐶 . 𝐹 is on Ω and 𝜔𝐵𝐶 . 𝐷 is on 𝜔𝐵𝐶 . Is 𝐷 on Ω? 𝑃Ω (𝐷) = 𝑃Γ (𝐷) since 𝐷 is on
𝐴𝑃. 𝑃Γ (𝐷) = 𝑃𝜔𝐵𝐶

(𝐷) since 𝐷 is on 𝐵𝐶. Everything up to 𝑃Ω (𝐷) = 𝑃𝜔𝐵𝐶
(𝐷) is correct. 𝐷 ∈ 𝜔𝐵𝐶 . So

𝑃𝜔𝐵𝐶
(𝐷) = 0. Correct. So 𝑃Ω (𝐷) = 0. Correct. This implies −𝐴𝐷 · 𝐷𝐻 = 0. Correct. Implies 𝐻 = 𝐷.

Contradiction.

Let’s re-read the problem carefully again. Maybe 𝑃 is not the reflection of 𝐻? "P is the reflection
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of H across BC". Okay. "circumcircle of triangle AFP intersects line BC at two distinct points X
and Y". Okay.

Perhaps the definition of Power of a Point for 𝑃Ω (𝐷)? 𝐴, 𝐹, 𝑃 ∈ Ω. 𝐷 is a point. Line 𝐴𝐷𝑃 passes
through 𝐷. It intersects Ω at 𝐴 and 𝑃. 𝑃Ω (𝐷) = ®𝐷𝐴 · ®𝐷𝑃. This is standard. Order 𝐴 − 𝐻 − 𝐷 − 𝑃.
®𝐷𝐴 points toward 𝐴. ®𝐷𝑃 points toward 𝑃. Opposite direction. 𝑃Ω (𝐷) = −𝐷𝐴 · 𝐷𝑃 = −𝐴𝐷 · 𝐷𝐻.

Correct.

Let’s reconsider 𝑃Γ (𝐷). 𝐴, 𝐵,𝐶, 𝑃 ∈ Γ. 𝐷 is on the line 𝐴𝐷 which contains 𝐴, 𝑃. 𝑃Γ (𝐷) = ®𝐷𝐴 · ®𝐷𝑃 =

−𝐴𝐷 · 𝐷𝐻. Correct. 𝐷 is on the line 𝐵𝐶 which contains 𝐵,𝐶. 𝑃Γ (𝐷) = ®𝐷𝐵 · ®𝐷𝐶. 𝐷 is between
𝐵,𝐶 for acute triangle. 𝑃Γ (𝐷) = −𝐷𝐵 · 𝐷𝐶. Correct. So 𝑃Γ (𝐷) = −𝐴𝐷 · 𝐷𝐻 = −𝐷𝐵 · 𝐷𝐶. This
implies 𝐴𝐷 · 𝐷𝐻 = 𝐷𝐵 · 𝐷𝐶. This is a known property. Proved earlier using similar triangles
△𝐵𝐷𝐻 ∼ △𝐴𝐷𝐶. Correct.

Now, 𝑃Ω (𝐷) = 𝑃Γ (𝐷) as 𝐷 ∈ 𝐴𝑃. 𝑃Γ (𝐷) = 𝑃𝜔𝐵𝐶
(𝐷) as 𝐷 ∈ 𝐵𝐶. 𝑃𝜔𝐵𝐶

(𝐷) = 0 as 𝐷 ∈ 𝜔𝐵𝐶 . So 𝑃Ω (𝐷) = 0
and 𝑃Γ (𝐷) = 0. This leads to 𝐴𝐷 · 𝐷𝐻 = 0, which is a contradiction.

What if one of the circles is not well-defined? △𝐴𝐵𝐶 is acute, non-degenerate. 𝐻 exists. 𝐹 exists.
𝑃 exists. 𝐴, 𝐹, 𝑃 distinct? 𝐴 ≠ 𝐹. 𝐹 ≠ 𝑃. 𝐴 ≠ 𝑃. Yes. So Ω exists. Γ exists. 𝜔𝐵𝐶 exists.

What if the radical axes are the same line? 𝐴𝑃 = 𝐵𝐶? Impossible. 𝐴𝐷 ⊥ 𝐵𝐶. What if the radical
center is at infinity? 𝐴𝑃 ∥ 𝐵𝐶? Impossible.

Let’s assume the question is correct and 𝐶 is the midpoint. This means 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻.
Consider the case when △𝐴𝐵𝐶 is equilateral. 𝐻 = 𝑂 (circumcenter). 𝐷 is midpoint of 𝐵𝐶. 𝐹 is
midpoint of 𝐴𝐵. 𝑃 reflection of 𝑂 across 𝐵𝐶. 𝐷 is midpoint of 𝑂𝑃. We verified 𝐶 is the midpoint
of 𝑋𝑌 for equilateral triangle. The contradiction 𝐻 = 𝐷 means my application/understanding of
radical axis theory is flawed in this context.

Let’s ignore the radical axis argument for a moment. We need to prove 𝐶 is the midpoint of
𝑋𝑌 . This is true if 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. The power 𝑃Ω (𝐶) is 𝐶𝑋 · 𝐶𝑌 . Let’s use the property
𝐶𝐻 = 𝐶𝑃. 𝑃Ω (𝐶). Consider 𝑃Ω (𝐶) = ®𝐶𝐴 · ®𝐶𝐾 where 𝐾 is the second point of intersection of 𝐴𝐶 with
Ω. Consider 𝑃Ω (𝐶) = ®𝐶𝐹 · ®𝐶𝐿 where 𝐿 is the second point of intersection of 𝐶𝐹 with Ω. We have
𝐴,𝐶, 𝐸, 𝐹 concyclic on 𝜔𝐴𝐶 . Power of point 𝑃 wrt 𝜔𝐴𝐶 is 𝑃𝐴 · 𝑃𝐸? No. Is it true that 𝑃Ω (𝐶) = −𝐶𝐻2?
If so, −𝐶𝐻2 = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. 𝐶𝐻2 = 𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻. But 𝐶𝐻2 = 𝐶𝐷2 + 𝐷𝐻2. So 𝐴𝐷 · 𝐷𝐻 = 𝐷𝐻2.
Since 𝐷𝐻 ≠ 0, 𝐴𝐷 = 𝐷𝐻. This means 𝐷 is midpoint of 𝐴𝐻. Only if ∠𝐵 = ∠𝐶 = 90. No.

Let’s revisit the coordinate calculation. We found 𝑘 = 𝑃Ω (𝐶). We wanted 𝑘 = −𝑥2
𝐴 − 𝑦𝐴 𝑦𝐻 .

This corresponds to −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. The identity required was 𝑥2
𝐴 + 𝑦𝐴 𝑦𝐻 = 𝐶𝐹2 + 𝑦𝐹 (𝑦𝐻 − 𝑦𝐴).

𝑥𝐴 = 𝐶𝐷, 𝑦𝐴 = 𝐴𝐷. 𝑦𝐻 = 𝐷𝐻 (assuming 𝐻 above 𝐷). 𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻 = 𝐶𝐹2 + 𝑦𝐹 (𝐷𝐻 − 𝐴𝐷).
𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻 = 𝐶𝐹2 − 𝑦𝐹 (𝐴𝐷 − 𝐷𝐻) = 𝐶𝐹2 − 𝑦𝐹 · 𝐴𝐻. 𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻 = 𝑥2

𝐹 + 𝑦2
𝐹 − 𝑦𝐹 · 𝐴𝐻. This

identity seems plausible and might be provable geometrically.

Let’s try one more angle property. 𝐴, 𝐹, 𝑃, 𝑋 ,𝑌 ∈ Ω. ∠𝐶𝐹𝐴 = 90. ∠𝐶𝑋𝐴 + ∠𝐶𝑃𝐴 = 180? No.
∠𝐶𝑋𝑃 + ∠𝐶𝐹𝑃 = 180? No. ∠𝐶𝑃𝐴 = ∠𝐶𝐵𝐴 = 𝛽. 𝐴, 𝑃, 𝐵,𝐶 concyclic (Γ). ∠𝐶𝐹𝐴 = 90◦. Power of 𝐶
wrt Ω is 𝑃Ω (𝐶). Let’s use the proved relation 𝑃Ω (𝐶) = −𝑎𝑏 cos𝐶 + 𝑏2 cos2 𝐶. This was derived
assuming 𝑢 = 0, which is the consequence we want to prove. Can’t use it.

Consider the identity 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. Let’s assume it’s proven. Then 𝑃Ω (𝐷) = −𝐴𝐷 ·
𝐷𝐻 = 𝑃Ω (𝐶) + 𝐶𝐷2. Also 𝑃Ω (𝐷) = 𝑃Ω (𝐶) − ®𝐶𝐷 · ( ®𝐶𝑋 +
𝑣𝑒𝑐𝐶𝑌 ) + 𝐶𝐷2. This implies ®𝐶𝐷 · ( ®𝐶𝑋 +
𝑣𝑒𝑐𝐶𝑌 ) = 0. As ®𝐶𝐷 ≠ 0 and vectors are collinear, ®𝐶𝑋 +
𝑣𝑒𝑐𝐶𝑌 = 0. This means 𝐶 is the midpoint of 𝑋𝑌 .

The proof requires proving the identity 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. Let’s try to find a reference for
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this identity or prove it. Let 𝐾 be the second intersection of 𝐴𝐶 with Ω. 𝑃Ω (𝐶) = 𝐶𝐴 · 𝐶𝐾. Let 𝐿 be
the second intersection of 𝐶𝐹 with Ω. 𝑃Ω (𝐶) = 𝐶𝐹 · 𝐶𝐿. 𝐴, 𝐹, 𝑃, 𝐾, 𝐿 are on Ω. Maybe relate Ω to
the nine-point circle?

Let’s reconsider the radical axis contradiction. 𝑃Ω (𝐷) = 0 implies 𝐻 = 𝐷. Perhaps one of the
circles is not what I defined. Γ = (𝐴𝐵𝐶). 𝜔𝐵𝐶 = (𝐵𝐹𝐷𝐶). Ω = (𝐴𝐹𝑃). 𝐷 ∈ 𝐴𝑃? Yes. 𝐷 ∈ 𝐵𝐶? Yes.
𝐷 is radical center. 𝑃Ω (𝐷) = 𝑃Γ (𝐷) = 𝑃𝜔𝐵𝐶

(𝐷). 𝐷 ∈ 𝜔𝐵𝐶? Yes. 𝑃𝜔𝐵𝐶
(𝐷) = 0. Must mean 𝑃Γ (𝐷) = 0.

Implies 𝐷 on (𝐴𝐵𝐶). Implies ∠𝐴 = 90. But triangle is acute. Could 𝐴𝑃 be tangent to Γ at 𝐴? No, 𝑃
is another point on Γ. Could 𝐵𝐶 be tangent to Γ? No. Could 𝐵𝐶 be tangent to 𝜔𝐵𝐶? No, 𝐵,𝐶 on
𝜔𝐵𝐶 .

What if 𝐷 is not the radical center? Maybe the axes are parallel? 𝐴𝑃 ∥ 𝐵𝐶? No. What if the circles
coincide? Ω = Γ? Then 𝐹 ∈ Γ. Impossible. Γ = 𝜔𝐵𝐶? Impossible. Ω = 𝜔𝐵𝐶? Then 𝐴, 𝑃 ∈ 𝜔𝐵𝐶 .
Impossible.

Maybe the definition of power ®𝐷𝐴 · ®𝐷𝑃 for 𝑃Ω (𝐷) assumes 𝐷 is outside Ω? No, it works for 𝐷
inside too. Then 𝑃Ω (𝐷) < 0. 𝐴 − 𝐻 − 𝐷 − 𝑃. 𝐷 is between 𝐻 and 𝑃. 𝐷 could be inside or outside
Ω. 𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝐻. Since 𝐴𝐷 > 0, 𝐷𝐻 > 0, 𝑃Ω (𝐷) < 0. So 𝐷 is inside circle Ω. This implies
𝑃𝜔𝐵𝐶

(𝐷) must be negative too. But 𝐷 is on circle 𝜔𝐵𝐶 , so 𝑃𝜔𝐵𝐶
(𝐷) = 0. This means 𝑃Ω (𝐷) = 0.

Contradiction.

There must be a mistake in my reasoning with radical axes. Let’s step through again. 1. 𝐴𝑃 is
radical axis of Ω, Γ. 2. 𝐵𝐶 is radical axis of Γ,𝜔𝐵𝐶 . 3. 𝐿 is radical axis of Ω,𝜔𝐵𝐶 . 4. 𝐷 = 𝐴𝑃 ∩ 𝐵𝐶.
Thus 𝐷 is the radical center. 𝑃Ω (𝐷) = 𝑃Γ (𝐷) = 𝑃𝜔𝐵𝐶

(𝐷). 5. 𝐷 ∈ 𝜔𝐵𝐶 , so 𝑃𝜔𝐵𝐶
(𝐷) = 0. 6. Therefore

𝑃Ω (𝐷) = 0. 7. 𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝐻. 8. Therefore 𝐴𝐷 · 𝐷𝐻 = 0. 𝐻 = 𝐷. Contradiction.

Is 𝐷 on the line 𝐴𝑃? Yes, 𝐴, 𝐻, 𝐷 are collinear. 𝑃 is reflection of 𝐻 in 𝐷. 𝐴, 𝐻, 𝐷, 𝑃 are collinear. So
𝐷 lies on the line containing segment 𝐴𝑃. Is 𝐷 on the line 𝐵𝐶? Yes, 𝐷 is foot of altitude on 𝐵𝐶. Is
𝑃 on Γ? Yes. Is 𝐴 on Γ? Yes. Is 𝐴 on Ω? Yes. Is 𝑃 on Ω? Yes.

Perhaps the power calculation 𝑃Ω (𝐷) = ®𝐷𝐴 · ®𝐷𝑃 requires 𝐴, 𝑃 to be the *only* intersection points
of line 𝐴𝐷 with Ω? Circle intersects line in at most 2 pts. Yes 𝐴, 𝑃 are the points.

Let’s assume the result holds and 𝐶 is the midpoint of 𝑋𝑌 . Then 𝑃Ω (𝐶) = −𝐶𝑋2. Also 𝑃Ω (𝐷) =
𝑃Ω (𝐶) + 𝐶𝐷2 = −𝐶𝑋2 + 𝐶𝐷2. We know 𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝐻. So −𝐴𝐷 · 𝐷𝐻 = −𝐶𝑋2 + 𝐶𝐷2. 𝐶𝑋2 =

𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻. This identity must hold.

Let’s prove 𝐶𝑋2 = 𝐶𝐷2 + 𝐴𝐷 · 𝐷𝐻. 𝐴𝐷 · 𝐷𝐻 = 𝐵𝐷 · 𝐶𝐷. This is only if △𝐴𝐵𝐶 is right at 𝐴? No,
this holds for orthocenter 𝐻. △𝐵𝐷𝐻 ∼ △𝐴𝐷𝐶. 𝐵𝐷/𝐴𝐷 = 𝐷𝐻/𝐷𝐶 =⇒ 𝐵𝐷 · 𝐷𝐶 = 𝐴𝐷 · 𝐷𝐻. So
𝐶𝑋2 = 𝐶𝐷2 + 𝐵𝐷 · 𝐷𝐶 = 𝐶𝐷(𝐶𝐷 + 𝐵𝐷) = 𝐶𝐷 · 𝐵𝐶. Let 𝐶 = 0. 𝐷 = 𝑑. 𝐵 = 𝑏. 𝑋 = 𝑥. 𝑥2 = 𝑑(𝑑 − 𝑏). No
this is not right. 𝐷 is between 𝐵,𝐶. 𝐶 = 0. 𝐵 = 𝑎. 𝐷 = 𝑑. 𝐶𝐷 = 𝑑. 𝐵𝐷 = 𝑎 − 𝑑. 𝐶𝑋2 = 𝑑2 + (𝑎 − 𝑑)𝑑 =

𝑑2 + 𝑎𝑑 − 𝑑2 = 𝑎𝑑. 𝐶𝑋 =
√
𝑎𝑑.

𝑋 and 𝑌 are points 𝑥, 𝑦. 𝐶 = 0. Midpoint 𝑥 + 𝑦 = 0. 𝑃Ω (𝐶) = 𝑥 𝑦 = −𝑥2. So 𝐶𝑋2 = −𝑃Ω (𝐶). We need
to show 𝐶𝑋2 = 𝐶𝐷 · 𝐶𝐵? No. 𝐶𝑋2 = 𝐶𝐷2 + 𝐵𝐷 · 𝐶𝐷. No 𝐴𝐷 · 𝐷𝐻.

Let’s use the identity 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻. This identity implies 𝐶 is the midpoint. Let’s
accept this identity as given, or derivable via coordinates. The proof relies on this specific
calculation of the power of 𝐶 wrt Ω.

Final conclusion check: The argument: 𝐶 midpoint ⇐⇒ 𝑃Ω (𝐷) = 𝑃Ω (𝐶) + 𝐶𝐷2. 𝑃Ω (𝐷) =

−𝐴𝐷 · 𝐷𝐻. So 𝐶 midpoint ⇐⇒ 𝑃Ω (𝐶) = −𝐴𝐷 · 𝐷𝐻 − 𝐶𝐷2. This identity needs proof. The
coordinate calculation confirmed this identity holds true.

Final conclusion seems solid, pending the proof of the identity for 𝑃Ω (𝐶). The coordinate check
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suggests it is true. Also, the failure of the radical axis argument needs clarification, but the
result seems provable through the power of point calculation. It’s likely there’s a subtle issue in
applying the radical axis theorem, or my power calculations related to it. However, the direct
calculation of 𝑃Ω (𝐶) and 𝑃Ω (𝐷) and their relation seems the correct path.

4.3.2. Rubric

1. Additional construction (1 pt).

• Requires constructing useful auxiliary points/objects.
• Credit is given only if the construction provides useful properties that help reach the

solution.

2. Properties of the construction (4 pts).

• The student must prove nontrivial properties of the construction.
• Emphasis: properties involving symmetry related to the circle (𝐴𝐹𝑃).
• Points are proportional to the depth and correctness of these proven properties.

3. Finishing (2 pts).

• The student must show that 𝐶𝑋 = 𝐶𝑌 using the previously established properties.
• This is the final step that connects the properties of the construction to the required

conclusion.

4.3.3. Grading Details

Human Judge 1

Points: 0/7

• Additional construction:

– The model does not construct the necessary points for its solution. In fact, it chooses
a computational approach that is unfinished and far from complete, so no points are
awarded.

– Points: 0 / 1

• Properties of the construction:

– The model does not identify any useful properties of the construction.
– Points: 0 / 4

• Finishing:

– The model did not manage to validly conclude that 𝐶𝑋 = 𝐶𝑌 .
– Points: 0 / 4

Human Judge 2

Points: 0/7

• Additional construction (0/1):

– No relevant constructions were created.

• Properties of the construction (0/4):
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– No non-trivial properties were proven. The solution assumes the power of a point
identity without proving it. No credit for an incomplete bash solution.

• Finishing (0/2):

– No relevant progress was made.

LLM Judge

Points: 3/7

• Criterion 1 (Additional construction, 1 pt):

– Student introduces 𝐷 (foot from 𝐴), 𝐸, 𝐹, and circles Γ and the diameter circle; uses 𝐷
meaningfully to relate powers, and the line 𝐴𝐷 intersects (𝐴𝐹𝑃) at 𝐴 and 𝑃.

– Construction of 𝐷 is useful and used to derive 𝑃Ω (𝐷) = −𝐴𝐷 · 𝐷𝐻.
– Points: 1/1

• Criterion 2 (Properties of the construction, 4 pts):

– Student shows 𝑃 lies on (𝐴𝐵𝐶) using symmetry and congruences; establishes 𝐴, 𝐻, 𝐷, 𝑃
are collinear, with 𝐷 the midpoint of 𝐻𝑃; computes 𝑃Ω (𝐷) correctly. However, incor-
rectly asserts 𝐵,𝐶, 𝐷, 𝐹 are concyclic, causing contradictions; also fails to prove the
key identity 𝑃Ω (𝐶) = −𝐶𝐷2 − 𝐴𝐷 · 𝐷𝐻, explicitly stating it as an assumption.

– Several correct and relevant properties are given, but the crucial connection to 𝐶 is
not proven and one major incorrect claim undermines the argument.

– Points: 2/4

• Criterion 3 (Finishing, 2 pts):

– Student reduces the midpoint condition to 𝑃Ω (𝐷) = 𝑃Ω (𝐶) + 𝐶𝐷2, but does not prove
the required identity for 𝑃Ω (𝐶), instead assuming it.

– Thus the conclusion 𝐶𝑋 = 𝐶𝑌 is not established.
– Points: 0/2

4.3.4. Criterion by Criterion Comparison

Criterion 1: Additional Construction (Human: 0, LLM: 1)

Human Judges. Human judges agreed that no relevant or meaningful constructions were
introduced. The solution relied on an incomplete computational approach, not on geometric
constructions, and therefore earned 0 points.

LLM Judge. The LLM judge interpreted the introduction of points 𝐷, 𝐸, 𝐹 and certain circles as
legitimate geometric constructions and credited the student for using 𝐷 meaningfully (e.g., in
computing a power-of-a-point expression), awarding 1 point.

Analysis of GPT-5 Misjudgment. The LLM treated the mere mention of new points as valid
constructions without checking whether they were actually justified or used in the argument.
This is not only a gap-filling issue but also a misclassification of what counts as a construction
under the rubric.

Criterion 2: Properties of the Construction (Human: 0, LLM: 2)
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Human Judges. Both human judges concluded that the student established no non-trivial or
useful geometric properties. Key identities were assumed rather than proven. As a result, the
human judges awarded 0 points.

LLM Judge. The LLM credited the student with establishing several geometric facts:

• 𝑃 ∈ (𝐴𝐵𝐶),
• 𝐴, 𝐻, 𝐷, 𝑃 are collinear,
• 𝐷 is the midpoint of 𝐻𝑃,
• a correct computation of 𝑃Ω (𝐷).

Although the LLM noticed the incorrect concyclicity and the unproven formula for 𝑃Ω (𝐶), it
treated them as partial errors, still giving 2 points.

Analysis of GPT-5 Misjudgment. The LLM did not verify whether these claimed properties
were actually justified in the student’s reasoning. It incorrectly treated serious errors as minor
issues instead of recognizing that, under the rubric, such errors invalidate the entire set of
geometric properties. This reflects a failure to:

• locally verify the correctness of each step;
• avoid assuming correctness based on plausibility rather than evidence.

Criterion 3: Finishing (Human: 0, LLM: 0)

Human and LLM Agreement. All judges agreed that the solution did not validly conclude
that 𝐶𝑋 = 𝐶𝑌 . The key identity was assumed rather than proven, so both humans and the LLM
awarded 0 points.
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5. Statistics

In this section, we present tables of empirical statistics for reference.

Table 1 | Error–Accuracy Metrics

Model MAE RMSE Acc. Acc.≤1 Acc.≤2

DeepSeek-Math-V2 0.67 1.68 0.73 0.88 0.91
GPT-5 0.79 1.67 0.61 0.81 0.92
Gemini-3-Pro-Preview 0.89 1.87 0.64 0.80 0.88
Kimi-K2-Thinking 0.97 1.98 0.61 0.80 0.87
GPT-5-Pro 0.90 1.74 0.56 0.78 0.89
GPT-OSS-120B 1.06 2.15 0.61 0.78 0.85
GPT-5.1 1.04 2.03 0.56 0.78 0.86
Qwen3-Max 1.22 2.38 0.61 0.74 0.81
DeepSeek-Chat-v3.1 1.30 2.42 0.54 0.74 0.79
Gemini-2.5-Pro 1.32 2.35 0.52 0.72 0.79
Qwen3-235B-A22B 1.39 2.41 0.49 0.70 0.78
Qwen3-32B 2.19 3.31 0.39 0.56 0.64
DeepSeek-R1 2.20 3.41 0.43 0.56 0.64
Qwen3-235B-A22B-Thinking 2.45 3.66 0.36 0.56 0.63

Table 2 | Correlation Metrics

Model Pearson Spearman Kendall 𝜿lin 𝜿quad Slope Intercept 𝑹2

GPT-5 0.75 0.58 0.53 0.57 0.70 0.86 0.76 0.56
Gemini-3-Pro-Preview 0.74 0.58 0.53 0.55 0.67 0.93 0.90 0.55
GPT-5-Pro 0.74 0.55 0.50 0.53 0.69 0.86 0.89 0.55
GPT-5.1 0.70 0.58 0.53 0.50 0.62 0.88 1.08 0.49
DeepSeek-Math-V2 0.62 0.50 0.47 0.52 0.62 0.61 0.37 0.39
Kimi-K2-Thinking 0.63 0.46 0.42 0.48 0.60 0.75 0.88 0.40
GPT-OSS-120B 0.62 0.51 0.46 0.47 0.56 0.78 1.04 0.39
Qwen3-Max 0.61 0.47 0.43 0.44 0.52 0.81 1.23 0.37
Gemini-2.5-Pro 0.61 0.46 0.41 0.41 0.52 0.77 1.39 0.37
DeepSeek-Chat-v3.1 0.60 0.45 0.41 0.42 0.51 0.80 1.33 0.36
Qwen3-235B-A22B 0.54 0.44 0.39 0.36 0.47 0.67 1.40 0.30
Qwen3-32B 0.47 0.40 0.35 0.26 0.32 0.67 2.36 0.22
Qwen3-235B-A22B-Thinking 0.44 0.39 0.34 0.23 0.28 0.66 2.66 0.19
DeepSeek-R1 0.41 0.35 0.31 0.25 0.28 0.60 2.38 0.17

Human Baseline 0.99 0.94 0.92 0.95 0.99 1.00 0.01 0.98
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Table 3 | Distributional Metrics

Model ER JSD RV

DeepSeek-Math-V2 1.13 0.02 0.95
GPT-OSS-120B 1.68 0.06 1.55
Gemini-3-Pro-Preview 1.61 0.07 1.57
Kimi-K2-Thinking 1.68 0.07 1.39
GPT-5 1.79 0.07 1.34
Qwen3-Max 1.60 0.08 1.78
GPT-5-Pro 1.93 0.10 1.34
GPT-5.1 1.85 0.09 1.57
Qwen3-235B-A22B 1.87 0.12 1.50
DeepSeek-Chat-v3.1 1.88 0.09 1.77
Gemini-2.5-Pro 1.99 0.12 1.59
DeepSeek-R1 1.97 0.16 2.11
Qwen3-32B 2.07 0.18 2.02
Qwen3-235B-A22B-Thinking 2.01 0.20 2.30

Human Baseline 0.95 0.00 1.01

Table 4 | Problem-wise Mean Absolute Error by Model

Model P1 P2 P3 P4 P5 P6 Average

DeepSeek-Math-V2 1.68 0.05 0.11 1.84 0.07 0.25 0.67
GPT-5 1.06 0.11 0.27 2.49 0.17 0.63 0.79
Gemini-3-Pro-Preview 1.02 0.25 0.27 2.57 0.73 0.48 0.89
GPT-5-Pro 1.06 0.07 0.66 2.52 0.53 0.53 0.90
Kimi-K2-Thinking 1.23 0.18 0.36 3.27 0.19 0.57 0.97
GPT-5.1 1.48 0.14 0.34 2.98 0.69 0.61 1.04
GPT-OSS-120B 1.33 0.07 0.43 3.66 0.18 0.71 1.06
Qwen3-Max 1.46 0.07 0.59 3.73 0.43 1.02 1.22
DeepSeek-Chat-v3.1 1.22 0.97 1.19 3.40 0.30 0.72 1.30
Gemini-2.5-Pro 1.13 0.14 2.09 3.30 0.75 0.50 1.32
Qwen3-235B-A22B 1.41 0.80 0.55 3.84 0.48 1.28 1.39
Qwen3-32B 2.51 1.64 1.32 4.66 1.39 1.63 2.19
DeepSeek-R1 1.61 1.52 4.16 4.25 0.59 1.09 2.20
Qwen3-235B-A22B-Thinking 3.36 1.75 2.43 3.98 1.74 1.46 2.45

Average 1.54 0.55 1.06 3.32 0.59 0.82 1.31

24



Table 5 | Problem-wise Accuracy by Model

Model P1 P2 P3 P4 P5 P6 Average

DeepSeek-Math-V2 0.50 0.95 0.95 0.30 0.93 0.77 0.73
Gemini-3-Pro-Preview 0.55 0.82 0.93 0.30 0.61 0.64 0.64
GPT-OSS-120B 0.34 0.91 0.89 0.09 0.82 0.61 0.61
GPT-5 0.34 0.91 0.91 0.16 0.82 0.52 0.61
Kimi-K2-Thinking 0.39 0.82 0.89 0.09 0.84 0.64 0.61
Qwen3-Max 0.45 0.93 0.89 0.14 0.77 0.45 0.61
GPT-5.1 0.30 0.86 0.89 0.14 0.70 0.50 0.56
GPT-5-Pro 0.30 0.93 0.82 0.11 0.59 0.59 0.56
DeepSeek-Chat-v3.1 0.41 0.45 0.75 0.14 0.82 0.66 0.54
Gemini-2.5-Pro 0.39 0.84 0.52 0.18 0.61 0.57 0.52
Qwen3-235B-A22B 0.41 0.39 0.89 0.07 0.77 0.41 0.49
DeepSeek-R1 0.34 0.41 0.36 0.14 0.77 0.57 0.43
Qwen3-32B 0.26 0.18 0.68 0.14 0.61 0.43 0.38
Qwen3-235B-A22B-Thinking 0.27 0.18 0.61 0.11 0.52 0.48 0.36

Average 0.37 0.69 0.78 0.15 0.73 0.56 0.55
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6. Empirical Details

6.1. Models

We select 14 models in our experiments which are: GPT-5, GPT-5 Pro, GPT-OSS-120B, Gemini-
2.5-Pro, Qwen3-Max, Qwen3-235B-A22B-Instruct, Qwen3-235B-A22B-Thinking, Qwen3-32B,
DeepSeek-R1, DeepSeek-Chat-v3.1, Kimi-K2-Thinking, DeepSeek-Math-V2, GPT-5.1, Gemini-3-
Pro-Preview. DeepSeek-Math-V2 is deployed locally and for other models we use APIs from
OpenRouter.

6.2. Dataset

We use the MathArena–USAMO (2025) dataset (data link) for all experiments. This dataset
contains 264 samples across the 6 problems from USAMO 2025, featuring long-form, proof-style
responses. Each problem contains a brief rubric by MathArena. Each sample is graded by 2 hu-
man judgers, which are stored as two values: points_judge_1 and points_judge_2. We use
points_judge_1 as the primary ground truth for all the evaluation, and points_judge_2 as
the reference for human baselines in Tables 2 and 3. We parse the rubric from grading_scheme_desc
of grading_details_judge_1.

The dataset was originally obtained from HuggingFace. However, an update was released on
Oct 17; we retained the original version for consistency throughout our experiments.

6.3. Prompt

Our default prompt is available at prompt link and is used across all experiments.

Note on reproducibility Exact reproduction of our empirical results may not be possible due
to API provider variability and stochasticity from temperature = 0.1. We therefore provide
complete run logs at Google Drive log link for reference.
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https://openrouter.ai
https://github.com/Gauss-Math/GAUSS-Eval/blob/main/data/USAMO2025/datasource/matharena_usamo2025_old.jsonl
https://huggingface.co/datasets/MathArena/usamo_2025_outputs
https://github.com/Gauss-Math/GAUSS-Eval/blob/main/src/default_prompt.py
https://drive.google.com/drive/folders/14vNvBaMQUYvjDJcEeFgbfcUmVyyaOzpo
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