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Abstract

We present a comprehensive statistical analysis of the consistency between human and Large
Language Model (LLM) judges in evaluating proof-based mathematical problems, benchmark-
ing 14 state-of-the-art models on the MathArena USAMO 2025 dataset. By decomposing
judgment behavior through error-accuracy, correlation, and distributional metrics, we show
that top performing models exhibit distinct grading philosophies - DeepSeek-Math-V2 grades
strictly, Gemini-3-Pro is precise on partially correct problems, and GPT-5 demonstrates bal-
anced performance. We further identify a consistent “leniency bias,” whereby most models
over-credit structurally plausible yet mathematically flawed solutions. Our analysis further
demonstrates that LLM judges produce significantly higher entropy score distributions than
humans and struggle with local verification, often hallucinating logical bridges rather than
penalizing omitted justifications. We hope our findings will help the community understand
LLM-as-a-judge and math reward models better.
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Figure 1 | Benchmarking LLM graders on MathArena USAMO 2025. Best model is bolded.
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1. Introduction

Large Language Models (LLMs) are increasingly used not only to solve mathematical problems,
but also to judge them — grading long-form, proof-style responses produced by humans or
other models.

Yet a fundamental question remains:
Can an LLM judge math problem answers like a human does?

This report presents a comprehensive statistical analysis of human-LLM grading consistency.
It investigates how current LLM judges align or diverge from human grading standards across
key statistical dimensions.

The analysis decomposes judgment behavior into layered diagnostics to reveal not only whether
LLM judges agree with humans, but also how and why their scoring behavior differs across
distinct validity and difficulty regimes.

Our analysis reveals a clear performance pattern across current LLM judges.

Specifically, GPT-5 and Gemini-3-Pro-Preview exhibit the strongest alignment with human
judges among closed-source models, whereas DeepSeek-Math-V2 and Kimi-K2-Thinking consti-
tute the most reliable and human-aligned judges within the open-source models.

However, despite these encouraging aggregate trends, all existing models still exhibit substantial
limitations in fine-grained evaluative accuracy. These observations also point directly to our
next research direction: strengthening LLMs’ ability to evaluate mathematical reasoning at a
local level. In particular, future judge models need to:

1. more accurately verify the correctness of specific argument steps, rather than relying on
global coherence;

2. more reliably identify missing or skipped reasoning, avoiding the tendency to implicitly
fill in gaps.

Taken together, these goals aim to move beyond coarse approximation and toward LLM judges
that analyze mathematical work with human-level granularity and rigor.

2. Problem Formulation

2.1. Grading Proof-based Problems

Given a mathematical problem g, a candidate solution a, and the rubric r, grading process for
proof-based problems can be formalized as a scoring function:

fo(gya,r) =»s€8

where fp can be either a human grader or an LLM grader, and S represents the scoring space
corresponding to the given rubric. In this work, we follow the USA Mathematical Olympiad
(USAMO) rubric where S = [0, 7].

2.2. Evaluation Desiderata

We leverage three sets of metrics to evaluate LLM graders. In Section 2.2.1, we first introduce
standard error-accuracy metrics for LLM graders. We then present correlation metrics and



distributional metrics for more fine-grained analysis.

2.2.1. Error-Accuracy Metrics.

Error-accuracy metrics quantify the deviation between model predictions and ground-truth
values on a per-example basis. They directly measure how close the predictions are to the correct
outputs.

Given ground-truth targets { yi}ﬁi , and model predictions {J; fi 1, we consider:
Mean Absolute Error (MAE). .
MAE=%;|J71'—%|~ 1
Mean Squared Error (MSE). y
MSE = % ; (3 - y1)* . )
Root Mean Squared Error (RMSE).
RMSE = VMSE. ®)

Accuracy Within k. For regression or ordinal prediction tasks, accuracy within k measures the
proportion of predictions whose absolute error does not exceed a tolerance threshold k:

1<,
Accuracysk:Nzlﬂyl‘—)’ﬂ <k}. (4)
i=1

This metric gives a flexible notion of correctness by allowing predictions to be considered correct
if they fall within an acceptable error margin.

2.2.2. Correlation Metrics.

Correlation metrics assess the degree to which model predictions preserve the trend or ordering
of the ground-truth data, largely independent of scale.

Pearson Correlation Coefficient.
e G- i-y)
VN G- 52 E i - 572

)

Spearman Rank Correlation Coefficient. Let d; be the difference between predicted and true
ranks. Then
6%, d?

CN(N2Z-1) ©)

p=1

Coefficient of Determination (R?). In an ordinary least squares (OLS) linear regression model,
the R? score measures the fraction of variance in the response variable explained by the fitted
model. Let

N N
TSS= ) (vi-97%  RSS=) (yi—3)™
i=1 i=1
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Then Ree
2 _ —_— —
R =1 TSS (7)

Higher values indicate better explanatory power of the linear model.

2.2.3. Distributional Metrics.

Distributional metrics evaluate how well the predicted distribution matches the empirical
distribution of the ground truth. They characterize global distributional properties such as
divergence, uncertainty, and variability.

Let P be the true distribution and Q the model distribution.

Entropy Ratio.

H(Q)

HE)' (8)

H(P)=-) P(x)logP(x),  EntropyRatio(P,Q) =

Relative Variance. when comparing two distributions,

Varg [X]

RelativeVariance(P || Q) = Varp[X]°

©)

3. Key Findings

We present four major findings on LLM-as-a-judge performance on MathArena USAMO
2025. We begin with overall model benchmarking and distributional analysis in Section 3.1
and Section 3.2. We then examine how models behave differently on zero versus non-zero
scored solutions in Section 3.3, and how grading precision varies across individual problems
in Section 3.4.

3.1. Benchmark LLM-as-a-Judge

We begin our analysis by benchmarking the 14 models (see Figure 1 and Tables 1 to 3) DeepSeek-
Math-V2 emerges as the best overall model, achieving the lowest MAE (0.67), highest accuracy
(0.73), and competitive Pearson correlation (0.62). This suggests it excels at precise numerical
predictions. GPT-5, GPT-5-Pro, and Gemini-3-Pro form a cluster of high-performing models
with MAE values below 1.0, accuracy around 0.56-0.64, and Pearson correlations of 0.74-0.75.
These models balance well across all metrics.

We observe that numerical accuracy alone does not fully capture the models’ grading capabilities:
while 4 models (GPT-5, Kimi-K2-T, GPT-OSS-120B, Qwen3-Max) achieve high accuracy (0.61),
their mean absolute errors vary substantially (from 0.79 to 1.22).

Interestingly, although GPT-5-Pro and Qwen3-235B-A22B-Thinking consume more inference-
time compute, they do not perform as well as their counterparts with less reasoning effort
(GPT-5 and Qwen3-235B-A22B-Instruct).



3.2. LLM Grades More Diversely than Human

DeepSeek-Math-V2
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Figure 2 | Distributional metrics on MathArena USAMO 2025. (Closer to 1 is Better)

The global distributional pattern (Figure 2 and Tab. 3) reveals a systematic expansion in both
entropy and variance across all models. Modern LLMs no longer produce narrowly concen-
trated score distributions; instead, they exhibit broader and more expressive grading behavior
compared with human judges.

DeepSeek-Math-V2 behaves exceptionally good in these two metrics with closer to 1 value on
ER (entropy ratio) and RV (relative variance).

Except that, all models demonstrate elevated ER values (typically in the range 1.6-2.0) (Figure 2
Left), indicating a clear increase in information entropy relative to the human reference. This
suggests that model scoring has become less concentrated and more exploratory, assigning
probability mass across a wider range of plausible evaluations.

The RV values (mostly between 1.3-1.9) (Figure 2 Right) confirm a consistent expansion in score
variance. Compared with human judges, models tend to exaggerate contrasts between good
and bad answers, displaying a mild but systematic over-dispersion bias.

3.3. LLM Gives Lenient Grades
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Figure 3 | Confusion Matrices of 3 Models and Human Baseline. Non-integer scores are
rounded to the nearest even integer. A confusion matrix is a table where each cell (i, j) is the
frequency with which a sample rated i by humans receives a score j from the model.

LLMs exhibit systematic leniency bias when grading mathematical solutions. The confusion
matrices in Figure 3 reveal that the lower-right triangles (where LLMs assign higher grades than
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Figure 4 | MAE vs. Accuracy on MathArena USAMO 2025. (3 recent models included)

humans) are consistently denser than the upper-left triangles (where LLMs assign lower grades),
indicating that models systematically over-credit solutions relative to human expert judgment.

This leniency, however, manifests differently depending on solution quality. USAMO problems
are exceptionally difficult, with most LLM solutions receiving human grades of 0. This creates
a natural partition for analyzing how graders behave on zero-scored versus non-zero-scored
solutions, revealing nuanced patterns in LLM grading behavior.

LLM graders show contrasting performance patterns across these two subsets (see Figure 4). On
solutions that humans graded as 0, models achieve higher accuracy but higher MAE compared
to their performance on the full dataset. The pattern reverses for solutions with positive human
scores: accuracy drops while MAE improves.

This divergence reflects fundamental differences between the two metrics. MAE measures
numerical proximity to human scores, while accuracy captures categorical correctness (i.e.,
exact score band matching). On non-zero solutions, models track human scores more closely
on average, producing smaller numerical deviations and lower MAE. However, the non-zero
score distribution is denser and more granular—distinguishing among 3, 4, 5, or 6 points rather
than simply 0 versus non-zero—making band misclassification more likely even with small
numerical errors, thereby reducing accuracy.

Individual models exhibit distinct grading philosophies. DeepSeek-Math-V2 grades exception-
ally strictly, achieving the best performance on the Human = 0 subset (10% higher accuracy than
the second-best model) but poor performance on Human > 0. Since MathArena-USAMO2025
is heavily skewed with 80% of samples receiving human grades of 0, DeepSeek-Math-V2’s
strict grading style makes it the best-performing model overall. The Gemini family shows the
opposite pattern—Gemini-3-Pro and Gemini-2.5-Pro rank as the top two models on the Human
> 0 subset while underperforming on the Human = 0 subset. GPT-5 demonstrates balanced
performance across both subsets, though it still exhibits the general leniency bias observed
across all models.



Problem-wise Mean Absolute Error by Model
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Figure 5 | Problem-wise Mean Absolute Error.

3.4. Grading Precision Correlates with Problems

Beyond the systematic leniency bias observed above, LLM grading performance also exhibits
strong problem-dependent variation. LLM grader precision varies considerably across problems
(see Figure 5). Remarkably, models of vastly different overall ranks in Table 1 (2st, 9th, 14th)
exhibit nearly identical problem-wise performance patterns: strong grading precision on P2,
P3, and P5, but consistently weaker performance on P4. This pattern becomes even more
pronounced in Table 5, where top models (GPT-5, GPT-OSS-120B, Kimi-K2-Thinking) achieve
near-perfect accuracy (> 0.80) on P2, P3, and P5, yet all struggle with P4.

This problem-specific difficulty is independent of the zero-score pattern analyzed in Section 3.3.
We verify that P4’s grading difficulty does not correlate with the proportion of zero-scored
solutions—in fact, according to human graders, P4 has the second-highest average score and
second-fewest zero grades among all problems, suggesting models struggle with P4 despite (or
perhaps because of) its solutions containing substantial mathematical reasoning.

4. GPT-5 Case Study

4.1. Overall Summary

We evaluate GPT-5’s grading consistency on 264 USAMO 2025 solutions. Overall, GPT-5
demonstrates good global alignment with human judgment, achieving a Pearson correlation
of 0.746, indicating that the model reliably reproduces human scoring trends across the full
score range. Error metrics further show that 91.7% of predictions fall within +2 points of human
scores, suggesting that GPT-5 is well-suited for coarse-grained evaluation.

However, a more granular analysis reveals systematic deviations. In the zero-score discrimi-
nation layer, GPT-5 assigns non-zero credit to 28% of responses that humans judged invalid,
indicating persistent over-crediting for structurally coherent but mathematically incorrect rea-
soning. Within the valid-answer regime, GPT-5’s alignment strengthens substantially (Pearson
=0.833).

Problem-wise analysis for GPT-5 (see the GPT-5 curve in the Problem-wise Mean Absolute Error



plot, Figure 5) reveals substantial heterogeneity across problems. GPT-5 performs exceptionally
well on Problems 1 and 3 (R? = 0.73 and 0.805, respectively), where solution structures are stable
and strongly cue-driven. In contrast, its performance deteriorates on Problem 4, where the
model shows large positive bias (+2.26) and high divergence from human score distributions,
suggesting difficulty with tasks requiring multi-path or less canonical solution strategies. No-
tably, Problem 2 displays an unusual pattern: despite achieving an lowest MAE (0.114) and
near-perfect +1 accuracy, its R? is nearly zero. This stems from the fact that human scores for this
problem exhibit almost no variance—most responses receive a score of zero. GPT-5 mirrors this
degenerate distribution, producing predictions that minimize absolute error but fail to explain
any meaningful variation. As a result, the model appears highly accurate in an absolute sense
while contributing no explanatory power, highlighting the limitations of variance-based metrics
under heavily skewed scoring regimes.

Taken together, our results paint GPT-5 as a capable but systematically biased math judge. At
the global level, it correlates well with human scores and achieves high coarse-grained accuracy.
However, the two case studies reveal a consistent failure mode. In Problem 1, GPT-5 over-credits
a solution with clear logical gaps, implicitly “repairing” invalid steps into a plausible derivation;
in Problem 4, it awards full credit to an answer that omits a central computation, treating the
missing work as if it had been carried out correctly. In both cases, the model grades plausibility
and surface structure rather than strictly checking what is actually written. This makes GPT-5
particularly weak at zero-score discrimination and at grading solutions that hinge on explicit,
non-omittable justifications. In short, GPT-5 is well-suited for large-scale, approximate alignment
with human scoring, but it is not yet a reliable substitute for human graders in strict evaluation
settings.

4.2. Problem 1 Case Study: Over-Completion of Incomplete Proofs

GPT-5 assigns a substantially higher score (5/7) despite the student’s omission of several rubric-
critical components. By contrast, both human judges award only 1/7, adhering strictly to the
principle that credit is given solely for arguments explicitly stated in the submission. Although
the student correctly formulates the digit recursion, they do not justify the floor/mod transfor-
mation, the required digit bounds, or the final choice of N; under the rubric, the absence of these
arguments constitutes decisive logical gaps.

GPT-5, however, interprets the incomplete reasoning as indicative of conceptual progress and
implicitly reconstructs intermediate steps. It grants partial credit for the floor/mod manipulation
(2/3), for the bounding argument (1/2), and full credit for the structural conclusion (1/1). In
effect, GPT-5 rewards the intended structure of the argument rather than the rigor of the written
derivation.

The systematic discrepancy can be attributed to the following differences in evaluative philoso-
phy:

1. Preference for conceptual intent over formal rigor. GPT-5 credits the presence of a
promising methodological idea, whereas human graders require fully articulated and
correct derivations.

2. Local rather than global correctness. Partial correctness on a single digit or a conjectured
pattern is sufficient for GPT-5 to award partial credit; human judges require correctness
uniformly across all digits.

3. Acceptance of inferential vagueness. Expressions such as “easy induction” are treated by
GPT-5 as acceptable indications of intended reasoning, but human judges do not count



such statements as valid justification.

4. Isolated evaluation of the conclusion. GPT-5 evaluates the final step independently of
earlier deficiencies, awarding full credit if the concluding structure appears sound; human
judges withhold this point when foundational steps are incomplete.

5. Holistic generosity. GPT-5 tends to fill in missing arguments and interpret incomplete
work charitably, whereas human grading is strictly confined to what is explicitly presented
in the written solution.

4.2.1. Problem Statement and Student Answer (Answer ID: 1)

’ Problem Statement: ‘

Let k and d be positive integers. Prove that there exists a positive integer N such that for every
odd integer n > N, the digits in the base-2n representation of n* are all greater than d.

Equivalently, if

nk = Z a;(2n)}, 0<a; <2n,
i=0

show that for all sufficiently large odd n, we have a; > d for every i.

’ Student Answer: ‘

Statement to prove. Fix positive integers k and d. Then there is an N so that for every odd integer
n > N, the base-(2n) expansion of n* has all of its “digits” strictly bigger than d.

In more elementary language, writing
n* =a.(2n) +a_1(2n) "'+ +a1(2n) + ao

with each digit 0 < a; < 2n, we must show that for all sufficiently large odd n, every a; is actually
greater than d.

1. The least significant digit is always n.

A convenient starting observation is the following congruence:

n*=n (mod 2n) whenever nis odd.

Indeed, one checks first that n' = n (mod 2n) is trivially true. Then, assuming nk =n (mod 2n),
one has
"l =nk.n=n-n=n? (mod 2n).

But for odd n, it is also true that
n>=n (mod 2n),

since n?

—n =n(n - 1) is clearly a multiple of 2n whenever n is odd. By induction,
n*=n (mod 2n)

for all positive k.

From this congruence we see at once that

ap =n* mod (2n) =n.

10



Hence the least significant digit of n* in base (2n) is always exactly n. In particular, once n > d,
the digit ag exceeds d.
2. A recursion for the higher “digits.”

To find the next digit a;, we form
X1 = |_nk/(2n)J, ai = x1; mod (2n), Xy = |_x1/(2n)J, and so on.

In other words, once we know that

n* =n+ (2n)x1,

we then define a; = x; mod (2n) and x; = |x1/(2n)]. Continuing likewise gives all the higher
digits a»,as,....

Concretely, since n* = n (mod 2n) implies (n* — n) is divisible by 2n, we get

nk—n n@1-1) nkl-1

2n 2n 2

Thus

nk-1-1

a; = (=) mod (2n).

One may continue similarly for x, by dividing x; by 2n, and so on.

3. Each higher digit also becomes large for large n.

A key point is that each “quotient” x; is in fact quite large once n is large, yet still satisfies a
simple congruence mod n. Indeed:

x1 =2 =l (mod n),
because n*~! = n (mod 2n) implies n¥1-1=n-1 (mod 2n), and hence also mod n. One finds
that
x| = ”T‘l +na; for some integer oy.
Thus

a; =x1 mod (2n) = (% + nal) mod (2n).

Since na; = 0 or n (mod 2n) depending on whether a; is even or odd, one sees that

n-1 3n-1
ale{T/ ) }

Both of these are on the order of n/2. Consequently, once n is large enough so that 5! > d, we
getay > d.

Repeating the same division-remainder process for

x2 = [x1/(2n) ]

one finds similarly that ay = x, mod (2n) must lie in a small finite set of values, each of which
again is on the order of n/22. And so on. In general one proves (by an easy induction) that a; is
always of the form
(2t+1n-1
2 ’

for some integer t, and hence all those possible values grow linearly with n up to a factor 1/2/.

11



Since the base-(2n) expansion of n* has at most k or k + 1 digits (in fact strictly fewer than (2n)*
bounds the number of digits), we only need to check finitely many j € {0,1, ...,k —1}. For each
such j, the expressions show g; is eventually at least n/2/ minus a small constant. Therefore,
once n is large enough, each a; exceeds d.

4. Conclusion: choosing N.

Gathering the above estimates together shows there is a finite threshold N (depending on k and
d) so that for all odd n > N, each digit a; of n* in base (2n) indeed satisfies a; > d. Concretely, we
must ensure

n>d,

>d, 2%>d,...,2kL_1>d,

NI=

so taking
N =max{2*"'d, d} (an odd integer)

works. Hence for all odd n > N, the base-(2n) representation of n* has every digit strictly bigger
than d, completing the proof.

4.2.2. Rubrics

¢ Initial closed form expression for each digit, Max points: 1. Rubric content: Uses the
base-2n representation of n* to find a closed form expression of each digit

nk
a; = {(Zn)iJ mod (2n).

¢ Interchanging the floor and mod, Max points: 3. Rubric content: Transforms the digit
expression into an easily boundable one by interchanging the floor and modulo operations.

* Bounding the expression, Max points: 2. Rubric content: Correctly bounds the aforemen-
tioned expression, usually by showing the numerator is divisible by n, so that

n
oz |z
* Finishing, Max points: 1. Rubric content: Chooses a provably sufficiently large N. The
point is not awarded if it has not proven that n* has at most k digits.

4.2.3. Grading Details

Human Judge 1
Points: 1/7

¢ Initial closed form expression for each digit (1 pt)

— The model derives a non-trivial set of possible values of a;.
— Points: 1/1

¢ Interchanging the floor and mod (3 pts)

— The model states the properties of the set can be proven by induction, but the model
shows only first step of the induction, as well as the base case.
— Points: 0/3

12



* Bounding the expression (2 pts)

— The model does not formally prove that the set contains all possible values of a;.
- Points: 0/2

¢ Finishing (1 pt)

— The model does not complete the solution in a rigorous manner.
- Points: 0/1

Human Judge 2

¢ Initial closed form expression for each digit (1 pt)

— The model finds a useful expression for each digit and has an idea, which can lead to
a correct proof.
— Points: 1/1

¢ Interchanging the floor and mod (3 pts)

— The model makes a wrong calculation and statement.
— Points: 0/3

* Bounding the expression (2 pts)

— The model incorrectly bounds each digit.
— Points: 0/2

¢ Finishing (1 pt)

— The model doesn’t finish a correct proof.
— Points: 0/1

LLM Judge

¢ Criterion 1 (Initial closed form expression for each digit, 1 pt)
Student: Writes nk = a;j(2n)’ with 0 < a; < 2n, and defines recursively x; = [nk/(2n)],
a1 =x1 mod (2n), x2 = [x1/(2n)], etc., which implies a; = |n*/(2n)] mod (2n).
Evaluation: Correctly identifies the base-(2n) digit formula via the floor/mod recursion.
Points: 1/1

¢ Criterion 2 (Interchanging the floor and mod, 3 pts)
Student: Uses congruence n* = n (mod 2n) to eliminate the floor at the first step and get
x1 = (nf=n)/(2n) = (n*~! = 1)/2, then analyzes a; via congruences mod n and mod 2n.
For higher digits, claims “continuing similarly” and an “easy induction” that a; has the
form ((2t + 1)n — 1)/2/, but does not show the analogous interchange/elimination of floor
beyond the first step.
Evaluation: Successfully transforms the first digit beyond ag into an easily boundable form
by leveraging exact divisibility, but does not carry out the detailed interchange/elimination
for general i. Partial fulfillment.
Points: 2/3

¢ Criterion 3 (Bounding the expression, 2 pts)
Student: For ay, derives a1 € {(n—1)/2, (3n—1)/2}, giving a clear lower bound = n/2. For
general aj, asserts they are of the form ((2t + 1)n — 1)/2/ and hence “eventually at least
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n/2/— (small constant),” but provides no rigorous derivation of this form or bound for all j.
Evaluation: Provides a correct bound for a; and a qualitative bound for general j without
tull justification. Partial credit.
Points: 1/2

¢ Criterion 4 (Finishing, 1 pt)
Student: Notes n* < (2n)*, hence at most k digits, and chooses N ensuring n/ 27 > d for all
j<k-1(eg,N>d- 2k-1 with oddness condition).
Evaluation: Correctly observes the bound on the number of digits and provides a sufficient
N.
Points: 1/1

4.2.4. Criterion-by-Criterion Comparison

1. Initial Closed-Form Expression (1 pt)

All three evaluations—Judge 1, Judge 2, and GPT-5—award full credit. The student’s base-(2n)
expansion

nk = Z aj(2n)j, 0<aj<2n
J

and the associated floor-mod recursion are entirely correct. Hence no discrepancy exists for this
criterion.

2. Interchanging Floor and Mod (3 pts)

Human Judge 1. Both judges give 0/3. Their reasoning:

* The student only carries out the base case and the first inductive step.
¢ The claimed induction (“continuing similarly”) is not demonstrated.
* Judge 2 notes an incorrect statement in this part.

Since the criterion demands a general and rigorous treatment for all digits, the attempt is judged
insufficient.

LLM Judge. LLM Judge awards 2/3. It notes:

* The student correctly removes the floor in the first step using n* =n (mod 2n), yielding
an exact expression for the first quotient.

* This demonstrates a valid technique for simplifying the recursion.

¢ Although the method is not carried through for all indices, GPT-5 regards the partial
demonstration as substantial progress.

Analysis of GPT-5 Misjudgement. GPT-5 evaluates this step by emphasizing the presence
of a correct core idea. It interprets the successful manipulation of the first floor-mod step as
evidence that the student understands the essential mechanism needed for generalization. Even
though the full induction is missing, GPT-5 credits the student for demonstrating a meaningful
and technically valid approach rather than requiring the argument to be fully executed.

3. Bounding the Digits (2 pts)
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Human Judges. Both judges give 0/2:

* Judge 1 observes that the student never proves the set covers all possible a;.
* Judge 2 states that the bounding is incorrect for the general case.

Thus the absence of a complete and correct argument yields zero credit.

LLM Judge. LLM Judge gives 1/2, reasoning that:

* The bound for a; is correctly derived.
* The asserted pattern % is plausible though unproven.
* Taken together, this constitutes a partial bounding effort with some correct content.

Analysis of GPT-5 Misjudgement. GPT-5 tends to award partial credit for partially correct
derivations. In this step, it recognizes that the student accurately bounded a; and attempted to
generalize the pattern. Although the general case is unsupported, GPT-5 interprets the attempt
as demonstrating conceptual direction rather than dismissing it entirely. Hence it assigns partial
credit rather than zero.

4. Finishing the Proof (1 pt)

Human Judges. Both give 0/1, because:

¢ The proof is not rigorous in earlier steps.
* Therefore the final conclusion cannot be regarded as a legitimate completion.

LLM Judge. LLM Judge awards 1/1, noting that:

e The student correctly establishes that n* < (2n)*, giving at most k digits.
* They choose an N ensuring a; > d forall j < k-1.
¢ Structurally, this completes the argument.

Analysis of GPT-5 Misjudgement. GPT-5 treats the proof’s final step as logically independent
of earlier deficiencies. Its scoring focuses on whether the student has assembled a coherent
concluding structure: bounding the total number of digits and selecting N to enforce the desired
inequality. Since the conclusion is formally correct, GPT-5 assigns full credit even though earlier
parts contain gaps.

4.3. Problem 4 Case Study: Tendency to Reward Plausible but Incorrect Reasoning

In this case, the LLM judge assigns partial credit (3/7) even though the student’s solution contains
multiple unproven claims, incorrect geometric statements, and a missing critical identity that
is explicitly assumed rather than derived. Both human judges, by contrast, assign a zero score
because the solution fails to establish any of the required geometric constructions or properties
and never completes the proof.
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The discrepancy arises because the LLM interprets the student’s argument as if several steps
were present, valid, or sufficiently justified. It treats plausible intermediate statements—such
as collinearity, midpoint relations, or power-of-a-point expressions—as though the student
had genuinely proved them, even when the reasoning is absent or incorrect. Human judges,
however, score only what is explicitly argued and penalize missing derivations and false claims
as fatal errors that invalidate entire scoring categories.

* LLM judges treat mathematically plausible steps as if they were proven, overlook missing
derivations, and under-penalize serious geometric errors.

¢ Human judges require explicit justification for every key construction property and con-
sider unproven or incorrect claims as fully invalidating the argument.

4.3.1. Problem Statement and Student Answer (Answer ID: 4)

’ Problem Statement ‘

Given an acute triangle ABC, let:

* H be the orthocenter,
¢ F the foot from C to AB,
e P the reflection of H across BC.

The circumcircle of AAFP intersects BC at two points X and Y.

Prove that C is the midpoint of XY.

’ Student Answer ‘

Let A, B,C be the vertices of an acute triangle, and let H be its orthocenter. Let D,E,F be
the feet of the altitudes from A, B,C to BC,CA, AB respectively. Let I be the circumcircle of
AABC. Let P be the reflection of H across the line BC. A well-known property is that P lies
on the circumcircle I'. Let’s prove this property. Let D be the foot of the altitude from A
to BC. Since H lies on AD, AD is the line containing H perpendicular to BC. Since P is the
reflection of H across BC, the line HP is perpendicular to BC, and the midpoint of HP lies on
BC. This means the line HP is parallel to AD. Since H is on AD, P must lie on the line AD.
Also, the midpoint of HP must be the intersection of HP and BC, which is D. So D is the
midpoint of HP, which means HD = DP. Let /ABC = 8 and /ACB =y. In right-angled ACDH,
/HCD = /FCB = 90° — B. Thus, .CHD = 90° — /HCD = 90° — (90° — ) = B. Since D is the
midpoint of HP and CD L HP, ACDP = ACDH (SAS congruence: CD = CD, /CDP = /CDH =90°,
DP = DH). Thus «CPD = /CHD = B. Since A, B, C are on the circumcircle I', we want to show P is
onT. A,B,C,P are concyclic if zBPC + /BAC = 180° or £CPA = /CBA. Similarly, ABDP = ABDH
(SAS congruence: BD = BD, /BDP = (BDH = 90°, DP = DH). Thus /BPD = /BHD. In right-
angled ABDH, /HBD = /EBC = 90° —y. So /BHD = 90° - (90° —y) = y. Thus /BPD = y.
Therefore, /BPC = /BPD + /CPD =y + 3. Since a + 8 +y = 180°, we have g +y = 180° — a. So
/BPC =180° — a. Since H is inside the acute triangle, A and H are on the same side of BC. P is the
reflection of H across BC, so P is on the opposite side of BC from A. The locus of points X such
that /BXC = 180° — a on the opposite side of BC from A is the circumcircle I' of AABC. Thus, P
liesonT.

Let Q be the circumcircle of AAFP. We are given that Q intersects the line BC at two distinct
points X and Y. We want to prove that C is the midpoint of the segment XY. Let Po(K) denote
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the power of a point K with respect to the circle Q. Let C be the origin on the line BC. Let
x and y be the coordinates of X and Y. C is the midpoint of XY if and only if x + y = 0. The
power of C with respect to Q is Po(C) = CX -CY = xy. If C is the midpoint, then y = —x, so
Po(C) = x(-x) = —x? = —=CX2. Let D be the foot of the altitude from A to BC. The power of D
with respect to Q is Po (D) = DX - DY. Let C be the origin and D have coordinated. X =x,Y = y.
Pa(D) = (x—=d)(y —d) =xy —d(x +y) +d? = Pq(C) —d(x + y) + d>. If C is the midpoint of XY,
then x + y = 0. In this case, Pq(D) = Pq(C) + d>. Using the vector notation, DX = CX -CD
and DY = CY = CD. Pq(D) = (CX —CD) - (CY =CD) = CX -CY —CD - (CX + CY) + CD2. Po(D) =
Po(C) - CD - (CX +

vecCY) + CD?. C is the midpoint of XY iff CX +CY =0. This is equivalent to Po (D) = Po(C) + CD?.
So we need to compute Pq(D) and Po(C) and check if this relation holds.

Let’s compute Pqo(D). A,F,P are on Q. A,D,P are collinear as shown earlier. The line AD
intersects Q at A and P. The power of D with respect to Q is Po(D) = DA - DP. Since A, H,D
are collinear in that order (ABC is acute), and D is the midpoint of HP, the order on the line is
A—H—-D - P. Thus D is between A and P? No, D is between H and P. A is "above" H relative
to BC. A— H — D — P. The vectors DA and DP point in opposite directions. Let AD length be h,.
DP =DH. Pqo(D) = —AD -DP = —AD - DH.

Now we establish the identity Po(C) = —CD? — AD - DH. If this identity holds, then P(C) =
—CD? + Po(D). This implies Pq (D) = Po(C) + CD?. As shown above, this is equivalent to C being
the midpoint of XY.

We need to prove Pg(C) = —CD? — AD - DH. We know that B, C, D, F are concyclic (on the circle
with diameter BC, call it wpc) because /BDC = £BFC =90°. The power of A with respect to wpc is
Pyy(A) = AF - AB. Since F lies on the segment AB (because AABC is acute), A, F, B are in order.
Let AF =1y, AB = c. Py,.(A) = AF - AB = AF - c. AF =bcos A. Py, (A) =bccos A. Also, A,C,E,F are
concyclic (on the circle with diameter AC, call it wac) because ZAEC = LAFC = 90°. The power of
B wrt wac is BF - BA. BF = acos B. BA = c. ac cos B. Power of B is also BE - BC. No.

We know that AD - AH = AE - AC. In AADC, /ADC = 90°. In AAEH, /AEH =90°? No. C,D,H,E
are concyclic (circle on diameter CH). Power of A wrt this circle is AD - AH = AE - AC. Thisis a
known property. AD - AH = bccos A. So P,,,.(A) = AD - AH.

wpC

Now consider the three circles Q(AFP), T'(ABC), wgc(BFDC). The radical axis of Q and T is the
line AP (since A, P are common to both). The radical axis of I' and wpc is the line BC (since B, C
are common to both). Let L be the radical axis of Q and wpc. The three radical axes AP, BC, L
must concur at the radical center. Let D = AP N BC. So D is the radical center. D must lie on L.
The property of the radical center D is Po (D) = Pr(D) = Py,.(D). Since D lies on the circle wpc (as
/BDC =90°), the power of D with respect to wpc¢ is Py,. (D) = 0. Thus, Pq(D) =0 and Pr(D) =0.
Po(D) = —AD - DH. Since AD > 0 (as A is not on BC), this implies DH = 0. This means H = D. If
H =D, D is the orthocenter. Since D lies on BC, this implies that the altitudes BD and CD must
lie along BC. This means BC L AC (£C =90°) and BC L AB (£B =90°). This is impossible for a
triangle.

Let’s re-evaluate the radical axis argument. There must be an error. Ah, the error is subtle. A, P
are on Q and I'. AP is the radical axis only if Q # I'. B,C are on T and wpc. BC is the radical
axis only if I' # wp¢. Fis on Q and wpe. D is on wpe. Is D on Q? Po(D) = Pr(D) since D is on
AP. Pr(D) =Py, (D) since D is on BC. Everything up to Pq(D) = Py,.(D) is correct. D € wpc. So
Puy. (D) = 0. Correct. So Po(D) = 0. Correct. This implies —AD - DH = 0. Correct. Implies H = D.
Contradiction.

Let’s re-read the problem carefully again. Maybe P is not the reflection of H? "P is the reflection
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of H across BC". Okay. "circumcircle of triangle AFP intersects line BC at two distinct points X
and Y". Okay.

Perhaps the definition of Power of a Point for Po(D)? A,F,P € Q. D is a point. Line ADP passes
through D. It intersects Q at A and P. Pq(D) = DA - DP. This is standard. Order A—H - D —P.
DA points toward A. DP points toward P. Opposite direction. Pq(D) = —DA - DP = —AD - DH.
Correct.

Let’s reconsider Pr(D). A, B,C,P €T. D is on the line AD which contains A,P. Pr(D) DA-DP =
—AD - DH. Correct. D is on the line BC which contains B,C. Pr(D) = DB-DC. D is between
B, C for acute triangle. Pr(D) = —DB-DC. Correct. So Pr(D) = —AD -DH = —-DB-DC. This
implies AD - DH = DB - DC. This is a known property. Proved earlier using similar triangles
ABDH ~ AADC. Correct.

Now, Pq(D) = Pr(D) as D € AP. Pr(D) = P,,.(D) as D € BC. Py,.(D) =0as D € wpc. So Pqa(D) =0
and Pr(D) = 0. This leads to AD - DH = 0, which is a contradiction.

What if one of the circles is not well-defined? AABC is acute, non-degenerate. H exists. F exists.
P exists. A, F,P distinct? A# F. F # P. A # P. Yes. So Q exists. I exists. wpc exists.

What if the radical axes are the same line? AP = BC? Impossible. AD 1 BC. What if the radical
center is at infinity? AP || BC? Impossible.

Let’s assume the question is correct and C is the midpoint. This means Pq(C) = -CD? — AD - DH.
Consider the case when AABC is equilateral. H = O (circumcenter). D is midpoint of BC. F is
midpoint of AB. P reflection of O across BC. D is midpoint of OP. We verified C is the midpoint
of XY for equilateral triangle. The contradiction H = D means my application/understanding of
radical axis theory is flawed in this context.

Let’s ignore the radical axis argument for a moment. We need to prove C is the midpoint of
XY. This is true if Po(C) = —~CD? — AD - DH. The power Pq(C) is CX - CY. Let’s use the property
CH = CP. Po(C). Consider Po(C) = CA - CK where K is the second point of intersection of AC with
Q. Consider Po(C) = CF - CL where L is the second point of intersection of CF with Q. We have
A,C,E,F concyclic on wac. Power of point P wrt wac is PA - PE? No. Is it true that Po(C) = —CH?%?
If so, -CH? = —CD? — AD - DH. CH? = CD? + AD - DH. But CH? = CD? + DH?. So AD - DH = DH?.
Since DH # 0, AD = DH. This means D is midpoint of AH. Only if /B = 2C = 90. No.

Let’s revisit the coordinate calculation. We found k = Pq(C). We wanted k = —xf‘ — YAYH-
This corresponds to —CD? — AD - DH. The identity required was xf‘ + yayy = CF? + ye(YH — Ya)-
Xp = CD, y» = AD. yy = DH (assuming H above D). CD?+ AD-DH = CF? + yy(DH — AD).
CD? + AD - DH = CF? - yp(AD — DH) = CF?> — yp - AH. CD*+ AD -DH = x2 + y2 — yp - AH. This
identity seems plausible and might be provable geometrically.

Let’s try one more angle property. A,F,P,X,Y € Q. LCFA = 90. /CXA + /CPA = 1807 No.
/CXP + /CFP = 180? No. Z/CPA = /CBA = B. A,P,B,C concyclic (I'). ZCFA =90°. Power of C
wrt Q is Po(C). Let’s use the proved relation Pq(C) = —abcosC + b2 cos? C. This was derived
assuming u = 0, which is the consequence we want to prove. Can't use it.

Consider the identity Po(C) = —CD? - AD - DH. Let’s assume it’s proven. Then Pq(D) = —AD
DH = Po(C) + CD?. Also Po(D) = Po(C) —CD - (CX +

vecCY) + CD2. This implies CD - (CX +

vecCY) = 0. As CD # 0 and vectors are collinear, CX +

vecCY = 0. This means C is the midpoint of XY.

The proof requires proving the identity Pq(C) = —~CD? — AD - DH. Let’s try to find a reference for
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this identity or prove it. Let K be the second intersection of AC with Q. Po(C) = CA-CK. Let L be
the second intersection of CF with Q. Pq(C) = CF-CL. A,F,P,K, L are on Q. Maybe relate Q to
the nine-point circle?

Let’s reconsider the radical axis contradiction. Pq(D) = 0 implies H = D. Perhaps one of the
circles is not what I defined. T = (ABC). wpc = (BFDC). Q = (AFP). D € AP? Yes. D € BC? Yes.
D is radical center. Pq(D) = Pr(D) = Py,.(D). D € wpc? Yes. Py, (D) = 0. Must mean Pr(D) = 0.
Implies D on (ABC). Implies /A = 90. But triangle is acute. Could AP be tangent to I' at A? No, P
is another point on I'. Could BC be tangent to I'? No. Could BC be tangent to wpc? No, B, C on

WBRC-

What if D is not the radical center? Maybe the axes are parallel? AP || BC? No. What if the circles
coincide? Q =T? Then F € I'. Impossible. T' = wp:? Impossible. Q = wpc? Then A, P € wpe.
Impossible.

Maybe the definition of power DA - DP for Po(D) assumes D is outside Q? No, it works for D
inside too. Then Pq(D) < 0. A— H—D —P. D is between H and P. D could be inside or outside
Q. Pqg(D) = —AD - DH. Since AD > 0,DH > 0, Po(D) < 0. So D is inside circle Q. This implies
P4, (D) must be negative too. But D is on circle wpc, s0 Py, (D) = 0. This means Pq (D) = 0.
Contradiction.

There must be a mistake in my reasoning with radical axes. Let’s step through again. 1. AP is
radical axis of Q,T. 2. BC is radical axis of T', wgc. 3. L is radical axis of Q, wgc. 4. D = AP N BC.
Thus D is the radical center. Pq(D) = Pr(D) = Py,.(D). 5. D € wpc, SO Py, (D) = 0. 6. Therefore
Pq(D) =0.7. Pq(D) = —-AD - DH. 8. Therefore AD - DH = 0. H = D. Contradiction.

Is D on the line AP? Yes, A, H, D are collinear. P is reflection of H in D. A, H, D, P are collinear. So
D lies on the line containing segment AP. Is D on the line BC? Yes, D is foot of altitude on BC. Is
PonTI? Yes.IsAonT? Yes. Is Aon Q7? Yes. Is P on Q? Yes.

Perhaps the power calculation Po (D) = DA - DP requires A, P to be the *only* intersection points
of line AD with Q? Circle intersects line in at most 2 pts. Yes A, P are the points.

Let’s assume the result holds and C is the midpoint of XY. Then Pq(C) = —CX2. Also Pq(D) =
Po(C) + CD? = —CX? + CD?. We know Pqo(D) = —AD - DH. So —AD - DH = —CX?* + CD?. CX? =
CD? + AD - DH. This identity must hold.

Let’s prove CX> = CD*> + AD - DH. AD - DH = BD - CD. This is only if AABC is right at A? No,
this holds for orthocenter H. ABDH ~ AADC. BD/AD = DH/DC — BD-DC = AD-DH. So
CX?> =CD?>+BD-DC =CD(CD+BD) =CD -BC. Let C=0.D=d. B=b. X =x. x> =d(d - b). No
this is not right. D is between B,C. C=0. B=a. D=d.CD=d. BD =a—d. CX* =d*> + (a—d)d =
d? +ad — d? = ad. CX = Vad.

X and Y are points x,y. C = 0. Midpoint x + y = 0. Pq(C) = xy = —x?. So CX?> = —P(C). We need
to show CX? = CD - CB? No. CX? = CD? + BD - CD. No AD - DH.

Let’s use the identity Po(C) = —~CD? — AD - DH. This identity implies C is the midpoint. Let’s
accept this identity as given, or derivable via coordinates. The proof relies on this specific
calculation of the power of C wrt Q.

Final conclusion check: The argument: C midpoint <= Pq(D) = Po(C) + CD?. Pq(D) =
—AD - DH. So C midpoint &= Pqo(C) = —AD - DH - CD?. This identity needs proof. The
coordinate calculation confirmed this identity holds true.

Final conclusion seems solid, pending the proof of the identity for Po(C). The coordinate check
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suggests it is true. Also, the failure of the radical axis argument needs clarification, but the
result seems provable through the power of point calculation. It’s likely there’s a subtle issue in
applying the radical axis theorem, or my power calculations related to it. However, the direct
calculation of Po(C) and Pq (D) and their relation seems the correct path.

4.3.2. Rubric

1. Additional construction (1 pt).

* Requires constructing useful auxiliary points/objects.
¢ Credit is given only if the construction provides useful properties that help reach the
solution.

2. Properties of the construction (4 pts).

* The student must prove nontrivial properties of the construction.
* Emphasis: properties involving symmetry related to the circle (AFP).
* Points are proportional to the depth and correctness of these proven properties.

3. Finishing (2 pts).

¢ The student must show that CX = CY using the previously established properties.
e This is the final step that connects the properties of the construction to the required
conclusion.

4.3.3. Grading Details

Human Judge 1
Points: 0/7

e Additional construction:

— The model does not construct the necessary points for its solution. In fact, it chooses
a computational approach that is unfinished and far from complete, so no points are
awarded.

- Points: 0/1

¢ Properties of the construction:

— The model does not identify any useful properties of the construction.
- Points: 0/ 4

¢ Finishing:
— The model did not manage to validly conclude that CX = CY.
— Points: 0/ 4

Human Judge 2

e Additional construction (0/1):
— No relevant constructions were created.

¢ Properties of the construction (0/4):
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— No non-trivial properties were proven. The solution assumes the power of a point
identity without proving it. No credit for an incomplete bash solution.

* Finishing (0/2):

- No relevant progress was made.

LLM Judge

 Criterion 1 (Additional construction, 1 pt):

— Student introduces D (foot from A), E, F, and circles T' and the diameter circle; uses D
meaningfully to relate powers, and the line AD intersects (AFP) at A and P.

— Construction of D is useful and used to derive Pq(D) = —AD - DH.

— Points: 1/1

¢ Criterion 2 (Properties of the construction, 4 pts):

- Student shows P lies on (ABC) using symmetry and congruences; establishes A, H, D, P
are collinear, with D the midpoint of HP; computes Pq (D) correctly. However, incor-
rectly asserts B, C, D, F are concyclic, causing contradictions; also fails to prove the
key identity Po(C) = ~CD? — AD - DH, explicitly stating it as an assumption.

- Several correct and relevant properties are given, but the crucial connection to C is
not proven and one major incorrect claim undermines the argument.

— Points: 2/4

¢ Criterion 3 (Finishing, 2 pts):

- Student reduces the midpoint condition to Po(D) = Po(C) + CD?, but does not prove
the required identity for Po(C), instead assuming it.

— Thus the conclusion CX = CY is not established.

— Points: 0/2

4.3.4. Criterion by Criterion Comparison

Criterion 1: Additional Construction (Human: 0, LLM: 1)

Human Judges. Human judges agreed that no relevant or meaningful constructions were
introduced. The solution relied on an incomplete computational approach, not on geometric
constructions, and therefore earned 0 points.

LLM Judge. The LLM judge interpreted the introduction of points D, E, F and certain circles as
legitimate geometric constructions and credited the student for using D meaningfully (e.g., in
computing a power-of-a-point expression), awarding 1 point.

Analysis of GPT-5 Misjudgment. The LLM treated the mere mention of new points as valid
constructions without checking whether they were actually justified or used in the argument.
This is not only a gap-filling issue but also a misclassification of what counts as a construction
under the rubric.

Criterion 2: Properties of the Construction (Human: 0, LLM: 2)
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Human Judges. Both human judges concluded that the student established no non-trivial or
useful geometric properties. Key identities were assumed rather than proven. As a result, the
human judges awarded 0 points.

LLM Judge. The LLM credited the student with establishing several geometric facts:

P € (ABC),

A,H, D, P are collinear,

D is the midpoint of HP,

e a correct computation of Pq (D).

Although the LLM noticed the incorrect concyclicity and the unproven formula for Pq(C), it
treated them as partial errors, still giving 2 points.

Analysis of GPT-5 Misjudgment. The LLM did not verify whether these claimed properties
were actually justified in the student’s reasoning. It incorrectly treated serious errors as minor
issues instead of recognizing that, under the rubric, such errors invalidate the entire set of
geometric properties. This reflects a failure to:

* locally verify the correctness of each step;
* avoid assuming correctness based on plausibility rather than evidence.

Criterion 3: Finishing (Human: 0, LLM: 0)

Human and LLM Agreement. All judges agreed that the solution did not validly conclude
that CX = CY. The key identity was assumed rather than proven, so both humans and the LLM
awarded 0 points.
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5. Statistics
In this section, we present tables of empirical statistics for reference.

Table 1 | Error—Accuracy Metrics

Model MAE RMSE Acc. Acc.c1 Acc.<o
DeepSeek-Math-V2 0.67 1.68 073 0.88 0.91
GPT-5 0.79 1.67 061 0.81 0.92
Gemini-3-Pro-Preview 0.89 1.87 0.64 0.80 0.88
Kimi-K2-Thinking 0.97 198 061 0.80 0.87
GPT-5-Pro 0.90 1.74 056 0.78 0.89
GPT-OS5-120B 1.06 215 061 0.78 0.85
GPT-5.1 1.04 203 056 0.78 0.86
Qwen3-Max 1.22 238 061 074 0.81
DeepSeek-Chat-v3.1 1.30 242 054 074 0.79
Gemini-2.5-Pro 1.32 235 052 072 0.79
Qwen3-235B-A22B 1.39 241 049 0.70 0.78
Qwen3-32B 2.19 331 039 0.56 0.64
DeepSeek-R1 2.20 341 043  0.56 0.64

Qwen3-235B-A22B-Thinking  2.45 366 036 056 0.63

Table 2 | Correlation Metrics

Model Pearson Spearman Kendall «j, Kkquada Slope Intercept R?
GPT-5 0.75 0.58 0.53 057 0.70 0.86 0.76 0.56
Gemini-3-Pro-Preview 0.74 0.58 0.53 0.55 0.67 0.93 0.90 0.55
GPT-5-Pro 0.74 0.55 0.50 053 0.69 0.86 0.89 0.55
GPT-5.1 0.70 0.58 0.53 050 0.62 0.88 1.08 0.49
DeepSeek-Math-V2 0.62 0.50 047 052 0.62 0.61 0.37 0.39
Kimi-K2-Thinking 0.63 0.46 0.42 048 0.60 0.75 0.88 0.40
GPT-0OSS-120B 0.62 0.51 0.46 047 056 0.78 1.04 0.39
Qwen3-Max 0.61 0.47 0.43 044 052 081 1.23 0.37
Gemini-2.5-Pro 0.61 0.46 041 041 052 077 1.39 0.37
DeepSeek-Chat-v3.1 0.60 0.45 041 042 051 0.80 1.33 0.36
Qwen3-235B-A22B 0.54 0.44 0.39 036 047 0.67 1.40 0.30
Qwen3-32B 0.47 0.40 0.35 026 032 0.67 2.36 0.22
Qwen3-235B-A22B-Thinking 0.44 0.39 0.34 0.23 0.28 0.66 2.66 0.19
DeepSeek-R1 0.41 0.35 0.31 025 0.28 0.60 2.38 0.17
Human Baseline 0.99 0.94 0.92 095 0.99 1.00 0.01 0.98
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Table 3 | Distributional Metrics

Model ER JSD RV
DeepSeek-Math-V2 113 0.02 0.95
GPT-0OS5-120B 1.68 0.06 1.55
Gemini-3-Pro-Preview 1.61 0.07 1.57
Kimi-K2-Thinking 1.68 0.07 1.39
GPT-5 1.79 0.07 1.34
Qwen3-Max 1.60 0.08 1.78
GPT-5-Pro 193 0.10 1.34
GPT-5.1 1.85 0.09 1.57
Qwen3-235B-A22B 1.87 0.12 1.50
DeepSeek-Chat-v3.1 1.88 0.09 1.77
Gemini-2.5-Pro 199 0.12 1.59
DeepSeek-R1 197 016 211
Qwen3-32B 2.07 0.18 2.02
Qwen3-235B-A22B-Thinking 2.01 0.20 2.30
Human Baseline 0.95 0.00 1.01

Table 4 | Problem-wise Mean Absolute Error by Model

Model P1 P2 P3 P4 DP5 P6 Average
DeepSeek-Math-V2 1.68 0.05 0.11 1.84 0.07 0.25 0.67
GPT-5 1.06 0.11 027 249 0.17 0.63 0.79
Gemini-3-Pro-Preview 1.02 025 027 257 073 048 0.89
GPT-5-Pro 1.06 0.07 066 252 053 053 0.90
Kimi-K2-Thinking 123 0.18 036 327 0.19 057 0.97
GPT-5.1 148 0.14 034 298 0.69 0.61 1.04
GPT-OSS-120B 1.33 0.07 043 366 0.18 0.71 1.06
Qwen3-Max 146 0.07 059 373 043 1.02 1.22
DeepSeek-Chat-v3.1 122 097 119 340 030 0.72 1.30
Gemini-2.5-Pro 113 014 209 330 075 0.50 1.32
Qwen3-235B-A22B 141 080 055 3.84 048 1.28 1.39
Qwen3-32B 251 164 132 466 139 1.63 2.19
DeepSeek-R1 161 152 416 425 059 1.09 2.20
Qwen3-235B-A22B-Thinking 3.36 1.75 243 398 174 146 2.45
Average 154 055 1.06 332 059 0.82 1.31
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Table 5 | Problem-wise Accuracy by Model

Model P1 P2 P3 P4 P5 P6 Average
DeepSeek-Math-V2 050 095 095 030 093 0.77 0.73
Gemini-3-Pro-Preview 0.55 0.82 093 0.30 0.61 0.64 0.64
GPT-0OSS5-120B 034 091 0.89 0.09 0.82 0.61 0.61
GPT-5 034 091 091 016 0.82 0.52 0.61
Kimi-K2-Thinking 0.39 0.82 0.89 0.09 0.84 0.64 0.61
Qwen3-Max 045 093 0.89 0.14 0.77 045 0.61
GPT-5.1 0.30 0.86 0.89 0.14 0.70 0.50 0.56
GPT-5-Pro 0.30 093 082 011 059 0.59 0.56
DeepSeek-Chat-v3.1 041 045 0.75 0.14 0.82 0.66 0.54
Gemini-2.5-Pro 0.39 0.84 0.52 0.18 0.61 0.57 0.52
Qwen3-235B-A22B 041 039 0.89 0.07 0.77 041 0.49
DeepSeek-R1 0.34 041 036 0.14 0.77 0.57 0.43
Qwen3-32B 026 0.18 0.68 0.14 0.61 0.43 0.38
Qwen3-235B-A22B-Thinking 0.27 0.18 0.61 0.11 0.52 048 0.36
Average 0.37 0.69 0.78 0.15 0.73 0.56 0.55
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6. Empirical Details

6.1. Models

We select 14 models in our experiments which are: GPT-5, GPT-5 Pro, GPT-OSS-120B, Gemini-
2.5-Pro, Qwen3-Max, Qwen3-235B-A22B-Instruct, Qwen3-235B-A22B-Thinking, Qwen3-32B,
DeepSeek-R1, DeepSeek-Chat-v3.1, Kimi-K2-Thinking, DeepSeek-Math-V2, GPT-5.1, Gemini-3-
Pro-Preview. DeepSeek-Math-V2 is deployed locally and for other models we use APIs from
OpenRouter.

6.2. Dataset

We use the MathArena-USAMO (2025) dataset (data link) for all experiments. This dataset
contains 264 samples across the 6 problems from USAMO 2025, featuring long-form, proof-style
responses. Each problem contains a brief rubric by MathArena. Each sample is graded by 2 hu-
man judgers, which are stored as two values: points_judge_1 and points_judge_2. We use
points_judge_1 as the primary ground truth for all the evaluation, and points_judge_2as

the reference for human baselines in Tables 2 and 3. We parse the rubric from grading_scheme_desc
of grading_details_judge_1.

The dataset was originally obtained from HuggingFace. However, an update was released on
Oct 17; we retained the original version for consistency throughout our experiments.

6.3. Prompt

Our default prompt is available at prompt link and is used across all experiments.

Note on reproducibility Exact reproduction of our empirical results may not be possible due
to API provider variability and stochasticity from temperature = 0.1. We therefore provide
complete run logs at Google Drive log link for reference.
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https://openrouter.ai
https://github.com/Gauss-Math/GAUSS-Eval/blob/main/data/USAMO2025/datasource/matharena_usamo2025_old.jsonl
https://huggingface.co/datasets/MathArena/usamo_2025_outputs
https://github.com/Gauss-Math/GAUSS-Eval/blob/main/src/default_prompt.py
https://drive.google.com/drive/folders/14vNvBaMQUYvjDJcEeFgbfcUmVyyaOzpo
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